
A Survey of Parallel Programming Languages
and Tools

Doreen Y. Cheng

Report RND-93-005 March 1993

NASA Ames Research Center
M/S 256-6

Moffett Field, CA 94035

- 2 -

Abstract

This survey examines thirty-five parallel programming languages and fifty-nine par-
allel programming tools. It focuses on tool capabilities needed for writing parallel scien-
tific programs, not on features that explore general computer science issues. The tools are
classified based on their functions and ranked with current and future needs of NAS in
mind: in particular, existing and anticipated NAS supercomputers and workstations, oper-
ating systems, programming languages, and applications.The report is designed to give
readers a quick grasp of the tool features, and provides tables to compare their main func-
tions.

- 3 -

Intr oduction

Providing sufficient parallel programming tools is one key step to enable NAS users
to use parallel computers.The report "A Survey of Parallel Programming Tools"
(RND-91-005) has been requested by more than 100 organizations. Since then, NAS has
added massively parallel supercomputers into its production computing facilities. Pro-
gramming for a wide variety of parallel architectures (SIMD, shared-memory MIMD,
distributed-memory MIMD, heterogeneous MIMD) demands a survey of a broader range
of programming tools than the tools included in report RND-91-005.In response to the
new demand, this report surveys parallel programming languages as well as tools.In the
text below, they are both referred to as tools.The scope of the survey has been enlarged
to include tools for all forms of parallel architectures and programming paradigms.

More than 80 tools were submitted to the survey; only a few were eliminated due to
their proprietary or obsolescent nature.About a dozen entries were written based on
available documents.This survey shares the same goal with the previous one: to help sci-
entific users use the NAS parallel supercomputers.Focus is placed on those tool capabili-
ties needed for parallel scientific programming rather than for general computer science.

This report describes 94 entries.They are grouped into five main categories based
on their functions: languages, libraries, debugging and performance tools, parallelization
tools, and others.The others include partitioning, scheduling and load balancing tools,
network utilities, and tools for building tools. This report has five parts, one for each cat-
egory of tools. A category may contain subcategories; each subcategory is organized as
one section.The tools in each category/subcategory are ordered according to their use-
fulness to NAS users.The usefulness is rated based on the languages that a tool supports,
the platforms on which it is currently available, the maturity of the tool, and the support
provided. Theinformation reported is based on the submissions by the tool developers
and available documents; it reflects the status of the reported tools up until February,
1993.

The report is designed to give readers a quick grasp of the functions provided by a
tool and of its usefulness in comparison with the tools in the same category. For this pur-
pose, the description of each tool gives no details but only a brief outline of its main func-
tions from a user point of view. References and contacts to the tool providers are given
for the readers who decide to learn more about the selected tools.Similar efforts with
slightly different purposes and emphasis can be found in1 2

To make it easier for readers to find a specific tool in the report, a look-up table in
pages 6-8 lists all the tools in alphabetic order. The "type" entry of the table indicates the
tool category. Appendix A-E presents the tables that compare the tools in the same cate-
gory, one for each category. The tools in these tables are also in alphabetic order. A page
number is listed for each tool indicating where it is described.The tables also indicate
the usefulness of a tool to NAS. Thenext section explains how the usefulness rating was
determined.

- 4 -

Evaluation Criteria

This report includes evaluation results from two sources: user submissions and eval-
uation based on NAS needs.The only editing applied to the submissions describing user
experiences is formatting. Entries with no "Evaluation" item imply that no descriptions
have been submitted from their users.

The evaluation of the usefulness to NAS is based on NAS user experience (if it
exists) and the literature available. A letter rating scheme is used in all the tables and the
meaning of the letter rating is spelled out in each tool entry. The rating is based on NAS
user feedback, the languages that a tool supports, the platforms on which it is currently
available, the maturity of the tool, and the support provided. Thenext two paragraphs
briefly introduces the computing environment and the user status at NAS.

NAS currently provides an Intel iPSC/860 and Paragon, Thinking Machine CM5,
CRAY C-90 and CRAY Y-MP for computation-intensive CFD applications.More mas-
sively parallel machines are under consideration for procurement.In addition, NAS is
experimenting with a more cost effective approach to parallel computing by using idle
cycles of a network of workstations. Themajority of the workstations at NAS are SGIs
with a small number of SUNs.All platforms use UNIX or UNIX-based operating sys-
tems.

NAS users are quite familiar with vector-oriented supercomputers (CRAY-style),
and are making a transition to using massively parallel machines (Intel, TMC, and a net-
work of workstations). Asmall percentage of the users have been developing new paral-
lel algorithms and applications from scratch; the majority of them have been modifying
programs developed by others and/or converting programs to run on the parallel plat-
forms. MostNAS applications are in Fortran and most users will be using Fortran for
new application development in foreseeable future.A small number of users have started
to use C and C++.

The remining paragraphs of this section explain the rating scheme.The rating is
biased by NAS needs, and therefore may not apply to other organizations. Therequire-
ments for tools in different categories may differ. For example, supporting all NAS plat-
forms is required by languages and libraries, but not by debugging and performance tools.

A rating "y" in the tables or "Yes" in the descriptions means that the tool is useful to
NAS. Criteria1 or 2 listed below plus 3 and 4 must be met for a tool to receive this rat-
ing: (1) The tool that has been used by NAS users and it is positively recommended by
the users. (2) The tool has been evaluated at NAS and other organizations and it is posi-
tively recommended. (3) The tool supports the platforms, operating systems, and lan-
guages required at NAS. (4)The tool supplier provides support and maintenance.

A rating "m" in the tables or "Maybe" in the entries means that the tool maybe use-
ful in its current status.Four possibilities lead to a tool to receive such a rating: (1) The
functions provided by the tool match NAS user needs, but none or limited user experience
or evaluation has been reported and the results are not uniformly positive. (2) The tool is
supplied by a hardware vendor, and it is needed by NAS users (if the hardware is avail-
able at NAS). (3) The tool is an emerging standard supported by many org anizations. (4)
The tool may be able to help parallel tool development.

A rating "n" in the tables and "No" in the entries means that the tool is not useful to
NAS. A rating "n,m" means that the tool is not useful to NAS users in its current status,
but may become useful in the future.Five possibilities lead to a tool to receive such rat-
ings: (1) The tool does not provide important functions needed by NAS. (2) The tool
does not support the platforms, operating systems, and/or languages required by NAS.
(3) The tool is based on another tool that is no longer supported.(4) Other tools in the
same category provide more complete functions and/or support more platforms.(5) The

- 5 -

tool is still in prototyping stage; more development work is needed for production use.

- 6 -

Index

Name Type Usefulto NAS Page Number
Adaptor l n 16
AIMS p m 111
APPL lib n,m 79

Atexpert p y 102
BBN-Perf p m 109

Blobs p n 153
Canopy lib n,m 72
Caper l+d+p n,m 56
CC++ l n,m 41
Charm l+p n,m 31

CM lib n,m 82
Code 2.0 l+p n,m 24
Condor ns m 147
Cool l+p n,m 39
CPS lib+d+p n,m 74
DJM ns m 146
Dino l n,m 32
DQS ns m 144

Enterprise pa+d+p n 136
ExecDiff d n 101
Express lib+d+p m 64
Falcon p n,m 114
Force l n,m 18

Forge 90 pa+p y 124
Fortran 90 l std 10
Fortran D l m 21
Fortran M l n,m 23

fpp pa y 122
Funnel sc m 145
Gang sc n 152

GenMP lib n 87
GPMS p n 120
Grids l n,m 26

When the type entry has more than one items connected by "+", the first one is the pri-
mary type. For example, "l+d+p" mean the tool is a language with debuggers and perfor-
mance tools built to support its use.

- 7 -

d: debugger
l: language
lib: library
m: maybe(user experience needed, support NAS systems)
n: no
n,m: noat present time, maybe in the future
ns: network support
p: performancetool
pa: parallelizationtool
sc: scheduler, load balancer
std: proposedstandard
y: yes

- 8 -

Index

Name Type Usefulto NAS Page Number
HPF l std 12

HyperTool l+p n,m 33
Improv mp n,m 139

Intel-Perf p m 104
IPD d m 98

IPS-2 p m 113
Jade l n,m 29
KAP pa n 123

KSR-Perf p m 107
Linda l+d+p m 52
LMPS lib n 85

Maritxu p m 118
MeldC l+d n 42
Mentat l n,m 37
MNFS ns n,m 149

Modula-2* l n 45
MPPE d+p m 91
Mtask lib n 86

O-O Fortran l n,m 19
P-D Linda l n 61

P-Languages l n,m 17
P4 lib+p m 69

Pablo p m 112
Paradise mp n,m 141

ParaGraph p m 105
Parallax l+p n 62

Parallaxis l+d+p n 43
ParaScope pa+d m 127
ParaSphere d+p m 93

Parmacs lib+p n,m 76

When the type entry has more than one items connected by "+", the first one is the pri-
mary type. For example, "l+d+p" mean the tool is a language with debuggers and perfor-
mance tools built to support its use.

d: debugger
l: language
lib: library
m: maybe(user experience needed, support NAS systems)
mp: meta-toolfor building performance tools
n: no
n,m: noat present time, maybe in the future
ns: network support
p: performancetool
pa: parallelizationtool
sc: scheduler, load balancer
std: proposedstandard
y: yes

- 9 -

Index

Name Type Usefulto NAS Page Number
Parti lib m 81
PAT pa+p m 130

PC++ l n,m 35
PCN l+d+p n,m 50

PCP/PFP l n 27
PDDP l n 28
PICL lib m 78
Polka mp m 143
Prep-P sc n 154
Prism d+p y 89
PVM lib m 67
Pyrros pa n 135
Sage mc m 138

Schedule pa+d+p n 134
Sisal l+d n,m 48
SPPL lib n 84
SR l n 60

Strand88 l+d+p n,m 46
TCGMSG lib n,m 70

Tiny pa m 132
TopDomDec part,sc m 150

Topsys l+d+p n,m 54
TotalView d m 95

UDB d m 97
Upshot p m 117

Vienna Fortran l n 20
Visage l+p n,m 58
Vo yeur p n 116
X3H5 l std 14
XAB d m 99
Xpdb d n 100

When the type entry has more than one items connected by "+", the first one is the pri-
mary type. For example, "l+d+p" mean the tool is a language with debuggers and perfor-
mance tools built to support its use.

d: debugger
l: language
lib: library
m: maybe(user experience needed, support NAS systems)
mc: meta-toolfor building compilers
mp: meta-toolfor building performance tools
n: no
n,m: noat present time, maybe in the future
p: performancetool
pa: parallelizationtool
sc: scheduler, load balancer
std: proposedstandard
y: yes

- 10 -

1. Parallel Languages

This part presents 35 parallel language some of which have tools developed around
them. Section1.1 presents parallel languages based on extending sequential Fortran.
Section 1.2 presents languages extending C. Section 1.3 lists parallel extensions to
object-oriented languages.Section 1.4 describes functional languages, logical languages,
and coordination languages (the languages which tie functions written in other languages
together). Thelanguages within each section are ordered according to its availability on
the platforms in which NAS is interested.

- 11 -

1.1 Fortran-Based Languages

1.1.1 FORTRAN 90

Functions:

• Extensions to Fortran 77 for parallel programming

• Array operations:

• Extending arithmetic, logical, and character operations
and intrinsic functions to operate on array-valued operands

• Whole, partial, and masked array assignment (WHERE)
• Array-valued constants and expressions
• User-supplied array-valued functions
• Intrinsic procedures to manipulate and construct arrays,

to perform gather/scatter operations, and to support
extended computational capabilities involving arrays

• Control statements and constructs:

• SELECT and CASE, DO WHILE/ENDDO, EXIT, and CYCLE
• Improved facilities for numerical computation
• Portable control over numeric precision specification
• Inquiry as to the characteristics of numeric representation
• Improved control of the performance of numerical programs

• Intrinsic functions

• Dot product
• Matrix multiply
• Matrix reduction operations

• User-defined data types

• Facilities for modular data and procedure definitions

• Pointers

• Dynamic memory allocation/deallocation

• INCLUDE facility to reduce the duplication of common declarations

• Recursive subroutine calls

• Parameterized intrinsic data types to include character sets
other than English

Useful to NAS: Maybe
(Emerging standard,
User experience needed)

- 12 -

Platforms: Theproposed standard is supported by:
Convex, Cray Research, DEC, Intel,
MasPar, SGI, TMC, and Tera

Operating System: Supported by each platform

Languages Supported: Fortran 90

Languages Used in Implementation:Vendor dependent

Graphic User Interface: None

Cost: Vendor dependent

Supplier: Thespecification is supplied by ISO/IEC

Contact: ISO/IEC

See reference3

- 13 -

1.1.2 HPF (High Performance Fortran)

Functions:

• Extensions to Fortran90 for high performance parallel programming

• Directives:

• Data alignment and distribution to increase locality of reference
• Assertion that the statements in a particular section of code

do not exhibit any sequential dependencies
• Declaration of rectilinear processor arrangements

• FORALL statement and construct

• Pure procedures (procedures, functions, and subroutine that do not
produce side effects) for elimination of undesirable consequences
such as non-determinism in parallel execution

• Extended intrinsic functions and standard library:

• Basic operations that are valuable in parallel algorithm design:

• Reduction functions
• Combining-Scatter functions (Performing combining

operations on gathered data then scatter the results)
• Prefix/Suffix functions
• Sorting functions
• Bit-manipulation functions

• System inquiry functions:

• Actual mapping of an array at run time
• Number of processors and the topology of processors

• Extrinsic procedures:

• Interface to procedures written in other paradigms (e.g. message passing)
• Interface to other languages (e.g. C)

• Parallel I/O (same as in Fortran 90)

• Sequence and storage association

Useful to NAS: Maybe
(Emerging standard,
User experience needed)

Platforms: Theproposed standard is supported by:
Alliant, Convex, Cray Research,
DEC, Fujitsu, HP, IBM, Intel, MasPar,
Meiko, nCUBE, and TMC

- 14 -

Operating System: Supported by each platform

Languages Supported: HPF

Languages Used in Implementation:Vendor dependent

Graphic User Interface: None

Cost: Vendor dependent

Supplier: Thespecification is supplied by
High Performance Fortran Forum

Contact: Adraft of "High Performance Fortran
Language Specification" available at:
titan.cs.rice.edu
in public/HPFF/draft/hpf-v10.ps
think.com
theory.tc.cornell.edu
minerva.npac.syr.edu
ftp.gmd.de

See reference4

- 15 -

1.1.3 X3H5

Functions:

• Extensions to Fortran and C

• SPMD (Single Program Multiple Data), fork-join paradigm

• Shared-memory programming model

• Parallel constructs identifying a block of statements for parallel execution
by one or more processes

• Worksharing constructs defining the units of work that shall be distributed
among a team of processes

• Iterative constructs to distribute entire block of statements to
each process

• Noniterative constructs to distribute several blocks of statements,
one to each process

• Ordered or unordered distribution of work

• Grouping constructs for grouping replicated code and worksharing
constructs to reduce the synchronization overhead

• Synchronization:

• Implicit at the beginning and the end of of parallel constructs, at
the end of worksharing constructs, and at the end of grouping
constructs

• Explicit by using a critical section construct, a lock, an event,
or a sequence

• Control not allowed to be transferred in or out of an enclosing parallel
construct, worksharing construct, grouping construct, or critical section
construct

• Attribute to classify a data object asnot available, private, or shared

Useful to NAS: Maybe
(Emerging standard,
(User experience needed)

Platforms: Vendors participating in definition of
proposed standard: CRAY Computer Co., CRAY
Research In., DEC, IBM, Sun, NEC, KAI, Alliant

Operating System: Provided by each platform

Languages Supported: Fortran, C

- 16 -

Languages Used in Implementation: Vendor dependent

Graphic User Interface: None

Cost: Vendor dependent

Supplier: Thespecification is supplied by
ANSI Technical Committee X3H5

Contact:
anonymous ftp to lynx.cs.orst.edu
in pub/x3h5

See reference5 6 7

- 17 -

1.1.4 ADAPTOR (Automatic DAta Parallelism TranslatOR)

Functions:

• Extensions to Fortran 77

• Array syntax as defined by Fortran 90
• Parallel loops (forall)
• Data layout/distribution directives

• Libraries for message passing and for global operations of
distributed arrays

• Source-to-source translation to generate Fortran 77 programs with
message passing

• Support for both interactive mode and batch mode

Useful to NAS: No
(Similar to HPF,
Useful concepts are likely to be
absorbed in standardization effort in USA)

Platforms: CM5,KSR-1, iPSC/860, Alliant FX/2800,
A network of workstations using PVM,
Parsytec GCel, Meiko Concerto

Operating System: Supported by the platforms

Languages Supported: CM Fortran, Subset of Fortran 90

Languages Used in Implementation: C, GMD compiler generator

Graphic User Interface: Athenawidgets, X-Windows system

Cost: None
ftp.gmd.de (129.26.8.90)
in subdirectory gmd/adapt

Supplier: GMD,I1.HR, Schloss Birlinghoven,
D-5205 St. Augustin, West Germany

Contact: Dr. Thomas Brandes
(49) 2241 - 14/2492
brandes@gmdzi.gmd.de

See reference8

- 18 -

1.1.5 P-LANGUAGES

Functions:

• Extensions to C and Fortran

• A shared memory programming model for associative and commutative
binary operations on message-passing machines

• Single program multiple data model

• Source-to-source transformation

• Deadlock prevention

• Dependence analysis to achieve overlapped communication and computation

• Communication overhead reduction by consolidating many communication
statements into one and hence increasing average message size

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/2,iPSC/860, Delta, KSR-1, Ncube 2

Operating System: Provided by each platform

Languages Supported: PC, Pfortran

Languages Used in Implementation: C, Lex, and Yacc

Graphic User Interface: None

Cost: $10,000
Academic discounts available
Manual available via anonymous ftp from
karazm.math.uh.edu

Supplier: Departmentof Mathematics
691 Phillip Guthrie Hoffman Hall
University of Houston
Houston, TX 77204--3476

Contact: L.Ridgway Scott
(713) 743-3445
Scott@UH.EDU

See reference9

- 19 -

1.1.6 FORCE

Functions:

• Extensions to Fortran for shared-memory multiprocessors

• Statically and dynamically scheduled parallel loops
• Parallel CASE statements
• Barriers
• Critical sections
• A construct for requesting processors to execute different

sections of code (functional parallelism)
• Operations to access user-defined asynchronous variables

(e.g. Produce,Consume, Void, Copy, and Isfull)

• Translation of a Force program to a Fortran 77 program with
system dependent parallel construct.

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Shared memory only,
Research project)

Platforms: Y-MP, CRAY2, KSR1, Encore,
Sequent, Convex, Alliant

Operating System: Provided on each platform

Languages Supported: Force

Languages Used in Implementation:Fortran 77 and C

Graphic User Interface: None

Cost: None

Supplier: ComputerSystems Design Group
Electrical and Computer Engineering
University of Colorado
Boulder, Colorado

Contact: Dr. Harry Jordan
(303) 492-7927
harry@boulder.colorado.edu

Dr. Gita Alaghband
(303) 556-2940
gita@boulder.colorado.edu

See reference10 11

- 20 -

1.1.7 OBJECT-ORIENTED FORTRAN

Functions:

• Extensions to Fortran to support declaration, creation and
management of objects

• A preprocessor to translate these constructs into standard
Fortran 77

• A l ibrary of routines for message passing and object management

• An interface to C++

• Management of parallel execution of instancies of objects

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Not all NAS platforms supported
Research project)

Platforms: InteliPSC/860, Delta, SGI Power Iris,
SGI Personal Iris, IBM RS6000, Sun

Operating System: Provided by each platform

Languages Supported: Fortran77, C++

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: EngineeringResearch Center for Computational Field Simulation
Mississippi State University/ National Science Foundation
PO Box 6176
Mississippi State University, MS 39762

Contact: DonnaReese
(601) 325-2656
dreese@erc.msstate.edu

See reference12

- 21 -

1.1.8 VIENNA FORTRAN COMPILA TION SYSTEM

Functions:

• Source-to-source translation from Vienna Fortran or Fortran 77 to
Fortran with explicit message passing

• Code generation for supported target machines

• Automatic parallelization and vectorization

• A batch command language to enable the creation of batch files which
may be automatically applied to a Fortran program

• A set of analysis services and a transformation catalog for interactive
user input to guide the system through the parallelization process

• Automatic recording of the sequence of transformations executed and
automatic execution of the sequence in the batch mode

Useful to NAS: No
(Not all NAS platforms supported,
Useful concepts are likely to be
absorbed in standardization effort in USA)

Platforms: InteliPSC-860, SUPRENUM supercomputer,
Genesis-P machine, all distributed memory
multiprocessors on which PARMACS (Version 5.0)
runs. SUN SPARCstation with a minimum of 8
Megabytes disk storage,

(Additional disk space is required for the parallelization of user code.)

Operating System: Provided by each platform

Languages Supported: Vienna Fortran, Fortran 77

Languages Used in Implementation: GNU C

Graphic User Interface: X11R5,OSF/Motif

Cost: None

Supplier: University of Vienna,
Institute for Statistics and Computer Science
Bruenner Str. 72
A-1210 Vienna
Austria

Contact: Dr. Peter Brezany
+43-222-392647-227
brezany@par.univie.ac.at

See reference13 14 15

- 22 -

1.1.9 FORTRAN D

Functions:

• Extensions to Fortran 77 or Fortran 90:

• A data decomposition directive for declaring an abstract problem
domain (index domain) which may also be considered a virtual
processor set

• An array alignment directive for mapping arrays onto the
problem domain

• A data distribution directive for grouping elements of the
decomposition and aligned arrays, and for mapping them to the
parallel machine (Each dimension can be local or distributed in
a block, cyclic, or block-cyclic manner.)

• A control directive for deterministic parallel loop execution

• Compiler optimization:

• Symbolic and dependence analysis
• Data and computation partitioning
• Overhead reduction by combining messages based on data

dependences
• Latency hiding by overlapping communication with computation
• Collective communication exploitation (e.g. broadcast & reductions)
• Parallelization of reductions and pipelined computations
• Interprocedural reaching decompositions calculation
• Efficient one-pass interprocedural compilation

• Translation of a Fortran D program into an SPMD Fortran 77
message-passing program

Useful to NAS: Maybe
(Technology development prototype for HPF,
Useful for tool development)

Platforms: SunSparc, IBM RS6000
Generates code for IPSC/860

Operating System: Provided by each platform

Languages Supported: Fortran77

Languages Used in Implementation: C and C++(g++ compiler)

Graphic User Interface: X11R4

Cost: $150for site license

Supplier: Centerfor Research on Parallel Computation
Dept of Computer Science
Rice University

- 23 -

Contact: TheresaChatman
(713) 527-6077
tlc@cs.rice.edu

See reference16 17

- 24 -

1.1.10 FORTRAN M

Functions:

• Extensions to Fortran 77 for parallelism at task level

• Constructs for explicit declaration of communication channels to
plug together program modules called processes (Modularity)

• Capability of encapsulating common data, subprocesses, and
internal communication as processes (Modularity)

• Restricted operations on channels to guarantee deterministic
execution, even in dynamic computations that create and delete
processes and channels (Safety)

• A non-deterministic construct for specifying time dependent actions

• Type checking for channels at compiler time (Safety)

• Tools to specify the mapping of processes to virtual processors
(Architecture Independence: separate the specification that influences
only performance from those that influence correctness)

• A compiler to optimize communication and computation (Efficiency)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Functional parallelism only,
Research project)

Platforms: SequentSymmetry, Sun sparc, NeXT
Distributed memory ports scheduled

Operating System: Dynix V3.1.4 with FastThreads thread library
SunOS 4.1.1, NeXTStep 2.1 or 3.0

Languages Supported: Fortran M

Languages Used in Implementation: C and Perl

Graphic User Interface: None

Cost: None

Supplier: Mathematicsand Computer Science Division
Argonne National Laboratory
Argonne, Ill.

Contact: IanFoster
(708) 252-4619
fortran-m@mcs.anl.gov

See reference18

- 25 -

1.1.11 CODE 2.0

Functions:

• A large-grain dataflow language for developing parallel programs.

• Graphical interface for users to draw communication structure
of programs

• Nodes for sequential computations defined as calls to routines
expressed in a sequential language

• Arcs for data-flow dependences between nodes
• User defined firing rules for nodes
• Mechanism for controlled use of shared variables
• User defined types.

• Support for hierarchical program development

• Support for program graphs whose topology is determined at runtime

• Automatic program performance instrumentation

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Functional parallelism only,
Research project)

Platforms: SequentSymmetry, Sun 4 workstations
(Plan to port to IBM RS/6000, and produce
sode for Sequents, Intel iPSC/860, and networks
of workstations)

Operating System: Provided by each platform

Languages Supported: Code 2.0 (Sequential code should be in C)

Languages Used in Implementation: C++

Graphic User Interface: X11R4or X11R5

Cost: TBD

Supplier: Dept.of Computer Sciences
University of Texas at Austin

Contact: JamesC. Browne
(512) 471-9584
browne@cs.utexas.edu

Peter Newton
(512) 471-9735
newton@cs.utexas.edu

- 26 -

See reference19

- 27 -

1.1.12 GRIDS

Functions:

• A computing environment for grid-based numerically intensive
computation

• Declarative language for overall control of solution method
• Topology description separated from computational algorithms
• Grid constructs as extensions to Fortran for computational

algorithms

• A runtime system which exploits knowledge of the parallelism inherent
in the problem and the grid based solution methods (Explicit parallel
programming not needed)

• Support for regular and irregular grids

• A preprocessor to translate a Grids code (topology, declarative part,
and extended Fortran procedures) to standard Fortran

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms,
Research project)

Platforms: Networks of IBM RS6000

Operating System: AIX 3.2

Languages Supported: Fortran77

Languages Used in Implementation: C

Graphic User Interface: X11R5

Cost: $400
$135 for educational and research institutions

Supplier: Institutefor Parallel and Distributed
High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22
W-7000 Stuttgart 80
Germany

Contact: Prof.Andreas Reuter
(+49) 711 7816 449
Andreas.Reuter@informatik.uni-stuttgart.de

See reference20

- 28 -

1.1.13 PCP/PFP (Parallel C/Fortran Pr eprocessor)

Functions:

• Extensions to C and Fortran.

• Fork-join parallel programming model on shared-memory multiprocessors

• Constructs to group processor resources into teams of processors

• Synchronization-free control constructs

• Low-overhead control constructs (On the order of a couple of local
memory references)

Useful to NAS: No
(Does not support NAS platforms,
Limited programming paradigm,
Research project)

Platform: BBNTC2000

Operating System: UNIX

Languages Supported: C, Fortran77

Languages Used in Implementation: C Lex and Yacc

Graphic User Interface: None

Cost: None

Supplier: Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Contact: BrentGorda
(510) 294-4147
brent@igor.nersc.gov

See reference21 22

- 29 -

1.1.14 PDDP (The Parallel Data Distribution Preprocessor)

Functions:

• Extensions to Fortran

• Data parallel programming model on shared memory systems
• Array syntax
• Directives for data distribution

• Library functions for global operations

• Translation of a PDDP program into a Fortran program using PFP
(see entry for PCP/PFP)

Useful to NAS: No
(Does not support NAS platforms,
Limited programming paradigm,
Research project)

Platform: BBNTC2000

Operating System: UNIX

Languages Supported: Fortran77

Languages Used in Implementation: C, LEX and YACC

Graphic User Interface: None

Cost: None

Supplier: Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Contact: BrentGorda
(510) 294-4147
brent@igor.nersc.gov

Karen Warren
(510) 422-9022

See reference23 24

- 30 -

1.2 C-Based Languages

1.2.1 JADE

Functions:

• A declarative, data-oriented language for coarse-grain parallel
programming

• Preservation of the abstractions of serial semantics and a single address
space

• Constructs for specifying how a program written in a standard sequential,
imperative programming language accesses data

• Translation of a C program with Jade constructs into a C program with
calls to the Jade implementation

• Dynamic interpretation of Jade specifications to determine which
parts of the program can execute concurrently without violating
the serial semantics

• Generation of the data movement messages required to implement
the abstraction of a single address space on distributed-memory
machines

Evaluation:

(By Martin Rinard of Stanford University)

Applications:

• Water Code: Derived from the Perfect Club benchmark mdg.
Simulates water in the liquid state

• String: Seismic application from the Department of Geophysics,
Stanford University. Performs geophysical travel-time tomography.
Reconstructs a velocity field from cross-well travel time data

• Volume Rendering: Department of Computer Science, Stanford
University. Uses volume rendering to visualize CAT scan data sets.

Strong points:

• Jade’s abstraction of serial semantics eliminates nondeterministic,
timing-dependent bugs: all parallel executions of a Jade program
deterministically generate the same result as the serial execution.

• Jade’s abstraction of a single address space eliminates the need
for programmers to manage the distribution of data across the
parallel machine.

• Programmers can effectively use Jade to develop coarse-grain parallel
programs that execute efficiently on a range of parallel architectures.

- 31 -

Weak points:

• No support for writing nondeterministic programs
• No user control for the low-level execution of the program

for maximal efficiency

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: InteliPSC/860, Stanford DASH,
SGI 4D/240, DEC, Sun, SGI

Operating System: Provided by each platform

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Departmentof Computer Science
Stanford University

Contact: MartinRinard
(415) 725-3722
martin@cs.stanford.edu

See reference25 26 27

- 32 -

1.2.2 CHARM

Functions:

• Extensions to C for shared-memory and message-passing systems

• Message-driven, non-blocking, execution for latency tolerance

• Reusable modules and libraries

• Information sharing abstractions

• A notation for specifying dependencies between messages and
pieces of computation

• Generation of C code with machine-specific parallel constructs

• Dynamic and static load balancing

• Trace generation and visualization for performance optimization

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/860,iPSC/2 NCUBE, Sequent Symmetry,
Encore Multimax, Networks of (Unix) workstations,
(Being ported to CM5)

Operating System: Provided by each platform

Languages Supported: C (C++ soon)

Languages Used in Implementation: C

Graphic User Interface: XMotif for the performance Visualization tools.

Cost: None
Anonymous ftp with conditions

Supplier: Departmentof Computer Science
University of Illinois at Urbana Champaign

Contact: L.V. Kale
kale@cs.uiuc.edu

See reference28 29

- 33 -

1.2.3 DINO

Functions:

• C extensions for data parallel programming

• Process creation, management, and termination
• Process communication and synchronization
• Global operations
• Data partitioning and mapping

• SPMD Paradigm

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/2,iPSC/860,
network of Sun workstations,

(A Sun required for the front-end of the compiler)

Operating System: Sun/OS for the front end

Languages Supported: C

Languages Used in Implementation: C, Pascal

Graphic User Interface: None

Cost: None

Supplier: University of Colorado

Contact: BobbySchnabel
bobby@cs.colorado.edu

See reference30 31

- 34 -

1.2.4 HYPERTOOL

Functions:

• C extensions for parallel programming

• Notation to define a procedure as an indivisible unit of
computation to be scheduled on one processor.

• Single assignment property of any parameter of a procedure.

• Directives IN and OUT for specifying whether the parameter
is read-only or read-write.

• Dataflow firing rule for procedure scheduling. (A procedure
can be executed iff all input of the procedure are available.)

• Task graph generation from the data flow between procedures

• Translation of a HyperTool code to a C code with message-passing
between procedures

• Static scheduling of processes to processors on distributed-memory
machines

• Performance estimates and measurements for parallel programs
(speedup, efficiency, suspension time, communication time, etc)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Functional parallelism only,
Research project)

Platforms: iPSC/2,iPSC/860
Tool runs on: SPARC

Operating System: Provided by each platform

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Departmentof Computer Science
State University of New York
Buffalo, NY 14260

- 35 -

Contact: Min-You Wu
(716) 645-3185
wu@cs.buffalo.edu

See reference32

- 36 -

1.3 Object-Oriented Languages

1.3.1 PC++ (Parallel C++)

Functions:

• A data-parallel extension to C++

• Collection class for concurrent aggregates (structured sets of
objects that are distributed over the processors and memories in
a parallel system)

• Concurrent application of arbitrary functions to the elements
of arbitrary distributed, aggregate data structures

• Collection alignment and distribution: (similar to HPF)

• Template objects for specifying distributed collections in
a giv en computation in relation to each other

• An alignment object for mapping a collection to a template.

• Kernel class:

• A global name space for the collection elements

• Method for managing parallelism and accesses to collection
elements.

• Collection library to provide a set of primitive algebraic structures
that may be used in scientific and engineering computations

• Distributed array for Fortran 90 style arrays and array
operations

• Distributed matrix and distributed vector class for BLAS-3
level operations

• Blocked distributed matrix and blocked distributed vector
for exploiting well tuned sequential class libraries for
matrix vector computations

• Grid classes for finite difference and finite element
applications.

• Dynamic structures (trees, unstructured meshes, dynamic
lists, and distributed queues)

• A preprocessor that translate a pC++ code into C++ code

- 37 -

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: CM-5,Paragon, Sequent,
BBN TC2000, all workstations

Operating System: Supported by each platform

Languages Supported: pC++

Languages Used in Implementation: C++, C

Graphic User Interface: None

Cost: None

Supplier: IndianaUniversity

Contact: DennisGannon
(812) 335-5184
gannon@cs.indiana.edu

See reference33

- 38 -

1.3.2 MENTAT

Functions:

• Extensions to C++ for parallel programming:

• Data-driven computation model
• User specifications for parallelism (by identifying the object

classes whose member functions are of sufficient computational
complexity to allow efficient parallel execution)

• A compiler which automatically detects the data and control
dependencies between Mentat class instances involved in invocation,
communication, and synchronization

• A run-time system:

• Support for method invocation by remote procedure call (The
compiler decides where and whether the caller needs to block, and
generates code for required synchronization and communication.)

• Program graph construction
• Communication and synchronization management
• Support for a graph-based, data-driven computation model in

which the invoker of an object member function need not wait
for the result of the computation, or receive a copy of the result.

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms,
Research project)

Platforms: iPSC/2,iPSC/860 (gamma),
SGI Iris, Sun 3 network, Sun 4 (Sparc) network,
(In progress: Paragon, CM-5, RS/6000)

Operating System: Provided by each platform

Languages Supported: MPL - an extended C++

Languages Used in Implementation: C++

Graphic User Interface: None

Cost: None
available by ftp uvacs.cs.virginia.edu
in pub/mentat

- 39 -

Supplier: Departmentof Computer Science
University of Virginia

Thornton Hall
University of Virginia
Charlottesville, Virginia 22903

Contact: Andrew Grimshaw
(804) 982-2204
grimshaw@virginia.edu
mentat@virginia.edu

See reference34 35

- 40 -

1.3.3 COOL (Concurrent Object Oriented Language)

Functions:

• Extensions to C++ designed to express task-level parallelism for shared
memory multiprocessors

• Declaration of C and C++ member functions as parallel to express
concurrency

• A shared address space for communication between parallel
functions

• Monitors for synchronization between shared objects
• Condition variables for event synchronization
• A construct for fork-join style synchronization at task level
• Abstractions for programmer-supplied information about the

data reference patterns of a program

• A yacc-based translator that translates a COOL program into a C++
program

• A runtime system that schedules tasks and distributes the data to
increase locality (based on the data reference information), and
balances the load

• MTOOL for identifying memory system and other performance bottlenecks
in programs

• MemSpy, a simulation-based tool, to study the memory system behavior
in detail and identify the causes of poor performance

• Tango, a simulation-based tool that allows us to study the program
performance under different memory hierarchies

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Research project)

Platforms: EncoreMultiMax, Stanford DASH
multiprocessor, SGI workstations

Operating System: UNIX

Languages Supported: COOL

Languages Used in Implementation: C, C++

Graphic User Interface: None

- 41 -

Cost: None
anonymous ftp from cool.Stanford.EDU

Supplier: ComputerSystems Lab
Stanford University

Contact: RohitChandra
(415) 725-3648
rohit@cool.Stanford.EDU

See reference36 37

- 42 -

1.3.4 CC++ (Compositional C++)

Functions:

• Extensions to C++ for compositional parallel programming

• Statements for creating new threads of control upon entering a
block of statements (key wordpar proceeding compound C++
statements)

• A statement for parallel threads whose number is determined at
run time (parfor)

• A statement for starting a new thread and returning immediately
to the calling process (spawn)

• A sync variable for synchronization and communication between
parallel threads

• A logical processor object for regular C++ global declarations
(no shared address space outside a logical processor object)

• Data parallel, task parallel, and object parallel

• Shared memory and message passing

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Research project)

Platform: SequentSymmetry, Sun, SGI

Operating System: UNIX

Languages Supported: CC++

Languages Used in Implementation: C, C++

Graphic User Interface: None

Cost: None
ftp csvax.cs.caltech.edu
in comp

Supplier: CaliforniaInstitute of Technology

Contact: CarlKesselman
(818) 356-6517
carl@vlsi.cs.caltech.edu

- 43 -

1.3.5 MELDC

Functions:

• A C-based object-oriented coordination programming language

• Support for a wide range of high-level features for programmers to cope
with problems in designing open systems

• Support for investigation of the language architecture without modifying
the language internals

• A MeldC variant of the gdb debugger

Useful to NAS: No
(Does not support NAS platforms,
For research in language design)

Platforms: Sun4,DecStations

Operating System: SunOS 4.1, Ultrix 4.2

Languages Supported: MeldC

Languages Used in Implementation:C and assembly

Graphic User Interface: None

Cost: None

Supplier: ProgrammingSystem Laboratory
Department of Computer Science
Columbia University

Contact: Prof.Gail E. Kaiser
MeldC@cs.columbia.edu

See reference38 39 40

- 44 -

1.3.6 PARALLAXIS

Functions:

• Extensions to Modula-2 for data parallel (SIMD) programming

• Means to describe the virtual parallel machine, the number
of identical processors with local memory, the names of communication
ports, and the network topology for data exchange among PEs

• Simulators on workstations and PCs for developing and
debugging parallel programs

• Compilers for massively parallel computers

• Trace generation for Parallaxis programs

• Displays for the load of the processing elements as a function
of the execution time

• Displays for the connection structures between PEs in a Parallaxis program

Useful to NAS: No
(Modula-2 is not considered by NAS)

Platforms: CM2,MasPar MP-1,
Sun3, SPARCstation/Sun4, DECstation,
HP/Apollo 700, IBM RS-6000,
Apple Macintosh, IBM-PC compatibles

Operating System: SunOS Release 4.1, DEC ULTRIX V4.2,
HP-UX 8.07, IBM AIX Version 3

Languages Supported: Parallaxis

Languages Used in Implementation: C

Graphic User Interface: X11R5

Cost: None
anonymous ftp:
ftp.informatik.uni-stuttgart.de
(129.69.211.1)

in pub/parallaxis

Supplier: Institutefor Parallel and Distributed Supercomputers,
Univ. Stuttgart, Breitwiesentr.
20-22, D-7000 Stuttgart 80,
Germany

Contact: Dr. Thomas Braunl
+49 (711) 781-6390
braunl@informatik.uni-stuttgart.de

- 45 -

See reference41 42

- 46 -

1.3.7 MODULA-2*

Functions:

• Extensions to Modula-2

• An arbitrary number of processes operating on data in the same,
single address space

• Synchronous and asynchronous parallel computations
• Arbitrarily nested parallelism
• All abstraction mechanisms of Modula-2

• Automatic process and data distribution by the compiler

Useful to NAS: No
(Modula-2 is not considered by NAS)

Platforms: MasPar MP1, a network of SUN4,
single SUN4 station
(DEC workstations soon)

Operating System: UNIX

Languages Supported: Modula-2*

Languages Used in Implementation: Modula-2 (MOCKA compiler), C
COCKTAIL compiler generation tools

Graphic User Interface: None

Cost: None
Anonymous ftp from iraun1.uka.de
in pub/programming/modula2star

Supplier: Institutfuer Programmstrukturen und Datenorganisation
Fakultaet fuer Informatik, Universitaet Karlsruhe
Postfach 6980, W-7500 Karlsruhe 1, Germany

Contact: ErnstA. Heinz
heinze@ira.uka.de

Paul Lukowicz
lukowicz@ira.uka.de

Michael Philippsen
lukowicz@ira.uka.de

++49/(0)721/6084386

See reference43 44

- 47 -

1.4 Others

1.4.1 STRAND88

Functions:

• A Prolog-like parallel processing language and development environment

• Interfaces for calling C and/or Fortran sequential routines

• Tools that monitor processor and communication load, and visualize
the data

• Library of parallel services, including worker-manager task management
and producer-consumer communication streams

• A symbolic, single-stepping debugger

• The Strand Abstract Machine:

• Support for specification of user application topology
• Automatic mapping of the application topology into the topology

of the distributed-memory machine or a network of computers
("Virtual Topology" facility)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms,
Functional parallelism only)

Platforms: iPSC/860,iPSC2/386, nCube 2,
Transputer/Helios, Sequent Balance/Symmetry,
Alliant FX/2800, Encore Multimax and 91XX
Series, Sun 600MP Multiprocessing Workstation,
Sun SparcStation, Meiko Computing Surface, HP9000
MIPS RISCstation, Cogent XTM Workstation,
MacII, IBM PS/2, RS/6000, NeXT, Pyramid,
TI TMS320C40 Digital Signal Processor

Operating System: Provided by each platform

Languages Supported: Strand88, Fortran, C

Languages Used in Implementation: C, Assembly

Graphic User Interface: X11version provided with the Sun OS

Cost: Approximately$1000/node commercial
60% educational discount

- 48 -

Supplier: Parallel Performance Group, Inc.
3368 Governor Drive, Suite F269
San Diego, CA 92122

Contact: Dr. Stuart Bar-On
(619) 737-973
strand@ppg.strand.com
4956839@mcimail.com

See reference45

- 49 -

1.4.2 SISAL

Functions:

• A general purpose functional language for parallel numeric computation

• Constructs to express scientific algorithms in a form close to their
mathematical formulation with no explicit program control flow

• An interface that allows Sisal programs to call C and Fortran and
allows C and Fortran programs to call Sisal

• Automatic exploitation of parallelism

• An optimizing compiler

• A symbolic debugger

Evaluation:

(By Chris Hendrickson and Dave Hardin of Lawrence Livermore
National Laboratory)

Strengths:

• Programs can be written in Sisal faster than they can be written
in conventional imperative languages.

• Programs in Sisal tend to be shorter in length.

• A Sisal program is executable on single as well as multiple
processors, with no code changes needed.

• Porting between machines involves only recompilation.

• Most Sisal programs outperform equivalent Fortran programs
compiled using automatic vectorizing and parallelizing tools.

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support message-passing)

Platforms: CrayX/MP, Y/MP, Cray-2, C90,
Alliant, Encore, Sequent,
Suns, Sparcs, IBM PCs, Macintoshes, Vaxes

Operating System: UNIX (BSD or AT&T)

- 50 -

Languages Supported: Sisal

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: ComputingResearch Group
Lawrence Livermore National Laboratory

Contact: JohnT. Feo
(510) 422-6389
feo@llnl.gov

Thomas M. DeBoni
(510) 423-3793
deboni@llnl.gov

See reference46 47 48 49

- 51 -

1.4.3 PCN (Program Composition Notation)

Functions:

• A C-like language for writing parallel programs:

• Facilities for constructing a parallel program by combining
simpler components in parallel, sequential, and choice blocks

• Support for components written in C, or Fortran (Components
can be written in PCN)

• Constructs for specifying how computation is mapped to
physical processors

• Facilities for reusing parallel code (templates)
• Standard libraries for I/O, mapping, etc

• A highly portable compiler:

• Message-passing code generation for distributed memory machines
• Shared-memory reads and writes on shared memory machines
• An interface to the C preprocessor for macros, and conditional

compilation

• Integrated source-level debugger for PCN programs

• Performance analysis tools for PCN programs

• Upshot: event trace collection, analysis, and visualization
• Gauge: profile collection, analysis, and visualization

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms,
Functional parallelism only)

Platforms: InteliPSC/860, Delta, Sequent Symmetry,
Sun 3, Sun 4, NeXT, IBM RS/6000, HP 9000

(series 800, 700, and 300),
ECstation 5000 (and 3100), SGI Iris

Operating System: Provided by each platform

Languages Supported: PCN, C, Fortran

Languages Used in Implementation: C

Graphic User Interface: X11R5for performance analysis tools

Cost: None
anonymous ftp from info.mcs.anl.gov

in directory pub/pcn

Supplier: Argonne National Laboratory

- 52 -

Contact: IanFoster
(708) 252-4619

Steve Tuecke
(708) 252-8711

pcn@mcs.anl.gov

See reference50 51

- 53 -

1.4.4 LINDA

Functions:

• Language extensions to C and Fortran for parallel programming

• A coordination langage for creating parallel or distributed applications
via a virtual shared memory paradigm

• Source level debugger (TupeScop)

• Graphical user interface
• Based on the shared memory
• Interface for processes to attach to standard source-level debuggers

(e.g. dbx)

• Consistency checking for tuple space usage

• Monitors message traffic and moves Linda run time library to reduce the
traffic

• Tuple space usage visualization

Evaluation:

(By Alan Karp of HP, the work was done when he was with IBM)52

Application:

Linpack 100 code on 5 IBM RS/6000s over Ethernet
and 3 IBM RS/6000s over the Serial Link Adapter (SLA)
fiber optical channel. The experiment was finished in
Aug., 1991

Strengths:

• Linda does what it says it will do and does it well.
• The code is stable, does not crash the system, has only

minor bugs
• Overhead of using the distributed tuple space is small in this

experiment. The message latency and bandwidth are the same as
measured in a program using Express (Done by H. Wang of IBM)

Weaknesses:

• The network performance over the SLA is disappointing. In
the 6ms it takes to get a small tuple from another machine
one can have executed 60,000 floating point operations. Even
accessing a local tuple consumes the time needed to do 3,000 flops.

Useful to NAS: Maybe
(User experience needed,
Does not support all NAS platforms)

- 54 -

Platforms: iPSC/2,Sun, IRIS, IBM RS6000,
Apollo, Encore, Sequent

Operating System: Provided by each platform

Languages Supported: C, Fortran77

Languages Used in Implementation: C, Fortran

Graphic User Interface: X11R4for debugger

Cost: $4,995/10workstation
$30,000 for iPSC/2

Supplier: ScientificComputing Associates Inc.

Contact: SudyBharadwaj
(203) 777-7442
software@sca.com

See reference53 54

- 55 -

1.4.5 TOPSYS (TOols for Parallel SYStems)

Functions:

• Autonomous objects for parallel programming (tasks, semaphores, and
mailboxes)

• A location-transparent message passing library MMK, i.e. The user
needs only specify the name of the receiving object (task, mailbox,
semaphore), not a physical resource (such as processor).

• Parallel debugger DETOP:

• Inspecting objects by their names used in the source code
• Observing and altering parallel execution at run time
• Breakpoint types (control flow, data flow, concurrency predicates)

selectable by user
• Distributed breakpoints
• Trace types (data traces, execution traces, concurrency traces,

traces of object interaction) selectable by user
• Display of source code and on-line help
• Single step mode (procedure steps, statement steps)
• Global view of distributed system
• Monitoring of communication

• Parallel performance monitor PAT OP:

• System level, Node level, Object level
• Specifying objects to be monitored by names used in source code
• User interaction at run time

• Parallel program visualizer VISTOP:

• Specifying objects to be monitored by names used in source code
• User interaction at run time
• A menu driven selection of objects to be animated in iconified

form or deiconified with additional information
• Scrolling
• Automatic replay at variable speed

• Process-processor mapping according to user specification

• Dynamic load balancing

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms and OS)

Platform: iPSC/2,iPSC/860, PARSYTEC SC, EDS

Operating System: NX/2, Parix, CHORUS

- 56 -

Languages Supported: C, Fortran77

Languages Used in Implementation: C, C++

Graphic User Interface: Xwindows

Cost: foriPSC systems site license $700
for Parsytec systems: license by Parsitex required

Supplier: Institutfur Informatik
Technische Universit"at Munchen
P.o.b. 20 24 20
D-8000 Munchen 2
Germany

Contact: Prof.Dr. A. Bode
++49-89-2105-8240
bode@informatik.tu-muenchen.de

See reference55 56

- 57 -

1.4.6 CAPER (Concurrent Application Programming Envir onment)

Functions:

• A visual programming tool to assist parallel programming in the large

• Support for medium-grained parallel programming
• A reusable block methodology with data flowing between blocks to

encourage building-block approach to parallel programming
• Facilities for expressing communication
• Generic parallel algorithms to help in parallelism extraction

(e.g. Sort, Prefix, Search, and Matrix Algorithms)

• A preprocessor:

• Code generation for data distribution, parallel I/O, and
distributed data restructuring

• Code generation for communication, task invocation and
synchronization

• Simple debugging facility for examining processes and communication
states

• Basic performance monitoring

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platforms: HPCmultiprocessor, NCR 3450, NCR 3600,
network of SUN-3, SPARC workstations

Operating System: UNIX or VORX

Languages Supported: C, C++, Concurrent C
(Planned: HP FORTRAN)

Languages Used in Implementation: C, C++, Concurrent C

Graphic User Interface: X11R3-R5

Cost: Available internally to AT&T since 1989
Will be available to external users
in Dec. 1993 to selected customers
at nominal cost

Supplier: AT&T/NCR

Contact: BinaySugla
(908) 949-0850
sugla@research.att.com

- 58 -

See reference57

- 59 -

1.4.7 VISAGE (VISual Attrib uted Graph Envir onment)

Functions:

• A graph-based parallel programming environment for functional
decomposition on distributed memory multiprocessors

• A large-grain dataflow based graphic language for prototyping:

• Specification of task dependence graph
• Graph annotation with parameters such as message length,

messages distribution, probability of communication

• A graphical, visual editing environment

• Specification for topology
• Task to processors mapping

• Tools for performance prediction and execution behavior simulation

• An object-oriented, structured editor for continuous modification of the
generated prototype into the actual code

• Run-time support:

• On-line display of 3 dimensional causality graph
• Observation of the concurrency set and dead-lock

• Post-mortem analysis:

• Automatic program instrumentation to generate trace
• Display of statistical information with multiple views
• 3-dimensional manipulations of the graphs

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Functional parallelism only,
Research project)

Platforms: Transputers running 3LC, Meiko, Mach
based environments (the i486)

Front end on Silicon Graphics
(SUN, iPSC2, Paragon planned)

Operating System: Meiko’s CS-tools, 3LC + extensions, Mach

Languages Supported: C and its parallel extensions

- 60 -

Languages Used in Implementation: C, GL on Silicon Graphics

Graphic User Interface: GL

Cost: None

Supplier: Elec.Engineering Dept.
The Technion, Israeli Institute of Technology
Technion City, Haifa
Israel

Contact: DrorZernik
972-4-294641 or 972-4-323041
dror@ee.technion.ac.il

See reference58 59

- 61 -

1.4.8 SR (Synchronizing Resources)

Functions:

• A language for writing parallel programs with multiple threads of control
connected in arbitrary fashion

• Support for multiple interprocess communication paradigms (local and
remote procedure call, rendezvous, message passing, dynamic process
creation, multicast, semaphores, and shared memory)

• Interface to C

• True parallel execution on multiprocessors and simulated parallelism
on uniprocessors

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Research project)

Platforms: SequentSymmetry, Sun4, Sun3, DECstation,
SGI Iris, HP RISC and 9000/300, NeXT,
IBM RS/6000, DEC VAX, DG AVi iON

Operating System: UNIX

Languages Supported: SR

Languages Used in Implementation: C, Yacc, Lex

Graphic User Interface: Nonerequired
Optional interface to X windows included

Cost: None
ftp from cs.arizona.edu in /sr

Supplier: Departmentof Computer Science
University of Arizona
Tucson, Arizona85721

Contact: sr-project@cs.arizona.edu
(602) 621-8448

See reference60

- 62 -

1.4.9 PROLOG-D-LIND A

Functions:

• Extensions to SICStus Prolog

• A distributed tuple space that uses unification for matching
• Prolog style deduction in the tuple space
• A control hierarchy that provides remote I/O facilities for

client processes

Useful to NAS: No
(Prolog is not considered at NAS)

Platforms: Networks of SUN Sparc and DEC stations
(Require SICStus Prolog 0.7 or 2.1, and
NFS or equivalent transparent access to shared
files)

Operating System: SUN OS and NFS, Ultrix and NFS

Languages Supported: SICStus Prolog 0.7 and 2.1

Languages Used in Implementation: SICStus Prolog and C

Graphic User Interface: None

Cost: None
ftp from ftp.cs.uwa.edu.au
in pub/prolog-linda (SICStus 0.7 version)
ftp from coral.cs.jcu.edu.au
in pub/prolog-linda (SICStus 2.1 version)

Supplier: SICStus0.7 version :
Department of Computer Science
The University of Western Australia
Western Australia

SICStus 2.1 version :
Department of Computer Science
James Cook University
Australia

Contact: Geoff Sutcliffe
+61 77 814622
geoff@cs.jcu.edu.au

See reference61

- 63 -

1.4.10 PARALLAX

Functions:

• A language for specifying a parallel program as a hierarchical large-grain
dataflow diagram

• Tools for specifying a target machine as a planar graph of processors and
network links

• Estimates of speedup, processor efficiency, utilization, and critical
path based on the specification

• Heuristics to schedule the program design onto the target machine

• Gantt chart, speedup graph, bar charts for efficiency and resource
utilization

• Simulation and animation of the program execution

Useful to NAS: No
(Does not support NAS platforms,
Functional parallelism only,
Simulation only,
Research project)

Platform: Macintosh

Operating System: Macintosh or A/UX

Languages Supported: Parallax

Languages Used in Implementation: Pascal

Graphic User Interface: Macintosh

Cost: Nonefor researchers and educators

Supplier: Oregon State University

Contact: Ted Lewis
(503)-737-5577
lewis@cs.orst.edu

See reference62 63

- 64 -

2. Libraries

The fifteen tools described in this part try to achieve portability by providing
libraries. Mostof them support parallelism within an application, except CM which only
supports parallelism at job level. Application-orientedhigh-level abstractions are pro-
vided in Canopy, whereas the others supports programming languages such as C and For-
tran with parallel extensions. Afew support programming in both shared-memory
paradigm and message-passing paradigm; others focus on just one.Several of them
extend the support for distributed memory machines to a network of computers.Associ-
ated debugging and performance tuning tools are provided by only a few of them.

- 65 -

2.1 EXPRESS

Functions:

• Library functions for parallelization

• Support for data and functional decompositions, client/server,
and distributed database

• Automatic loop parallelization, data distribution, and domain
decomposition

• Translation of Fortran 90 source code to Fortran 77

• Support for CM2 extensions

• An interactive distributed source and assembly level debugger

• Tools for performance optimization:

• Program instrumentation
• Run time profile used for guidance
• Dynamic load balancing
• Interactive memory access visualization
• Post-mortem communication and event analysis
• Communication and event monitoring

• Parallel I/O

• Hardware configuration management

Evaluation:

(By Doreen Cheng of NASA Ames Research Center, through testing)

Strengths:

• Provides extensive set of tools for message-passing machines
(debugging, performance monitoring, load balancing and parallelization).

• Covers a broad range of hardware, operating system, and languages.

Weaknesses:

• Debugger, profiler, parallel I/O, graphics are not available on
Y-MP, nor for Intel iPSC/860 with an SGI IRIS as frontend.

• Lacks support for interactive dependency analysis.

- 66 -

(By Donna Bergmark of Cornell Theory Center)

• Has been working on a cluster of RS/6000 workstations since
about December 1992, and is on the verge of being put into
production. Experiencewith this latest release is that is
runs much faster than the earlier experimental one that was
at Cornell when the initial version of this report was being
prepared.

(By Bill Pearson of University of Virginia)

Application:

• A C program compares a set of protein sequences (typically
10 - 100) to a larger set of protein sequences (2,000 - 10,000)
and calculates a similarity score using several algorithms
that differ in speed over a 100-fold range.Absolute
communications overhead is constant but relative communications
overhead varies from >50%to <5%. (Twelve Sparc 4/40 were used.)

Conclusion:

• On problems where communications cost is significant,
PVM (2.4.1) imposes substantially more overhead than
Express (3.2.5) (For PVM, snd()/rcv() was used. For Express
exwrite()/exread() was used.

Useful to NAS: Maybe
(User experience needed)

Platforms: CRAY X-MP (UNICOS), CRAY Y-MP (UNICOS)
Intel iPSC2, iPSC/i860, iWARP, DELTA,
IBM3090 (AIX), IBM ES9000
nCUBE 2, nCUBE 2E, nCUBE 2S

A network of
HP9000/700, IBM RS6000, PVS, RS6000 with Bit3
shared memory switch, SGI, Sun SPARCstations*,
SPARCServer, SPARCengine2, SPARCserverXXXMP

Transputers including Archipel i860, Inmos,
Microway, Parsytec, Quintek, Transtech i860,
PC’s and Sun’s.

Operating System: NX on iPSC/860, Paragon OSF/1 on Paragon

Languages Supported: C, Fortran77

Languages Used in Implementation: Fortran 77, Fortran 90, C and C++

Graphic User Interface: X-Windows, Sunview, Postscript

- 67 -

Cost: $3,000per Intel iPSC/860
$15,000 per Y-MP
$1,500 for network of Suns
20% maintenance fee per year

Supplier: ParaSoft

Contact: AdamKolawa
(818) 792-9941

See reference64

- 68 -

2.2 PVM (Parallel Virtual Machine)
HeNCE (Heterogeneous Network Computing Envir onment)

Functions:

• Library routines that permits a network of heterogeneous computers
(serial, parallel, and vector computers) to appear as one large computer

• Process management
• Message passing
• Data conversion between different machine representations

• A programming environment

• Graphic interface for users to explicitly specify the parallelism
of a computation

• Tools to automate, as much as possible, the tasks of writing,
compiling, executing, debugging, and analyzing a parallel
computation

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Widely used since it is difficult to write a message passing
program on a network of workstations

(By Glenn Kubena, Kenneth Liao, Larry Roberts of IBM)

Strengths:

• Widely used
• Simple and easy to use

Weaknesses:

• Lack of support for fault tolerance
• Lack of load balancing
• No receipt selectivity other than by message type

- 69 -

(By Bill Pearson of University of Virginia)

Application:

• A C program compares a set of protein sequences (typically
10 - 100) to a larger set of protein sequences (2,000 - 10,000)
and calculates a similarity score using several algorithms
that differ in speed over a 100-fold range.Absolute
communications overhead is constant but relative communications
overhead varies from >50%to <5%. (Twelve Sparc 4/40 were used.)

Conclusion:

• On problems where communications cost is significant,
PVM (2.4.1) imposes substantially more overhead than
Express (3.2.5) (For PVM, snd()/rcv() was used. For Express
exwrite()/exread() was used.

Useful to NAS: Maybe
(User experience needed)

Platforms: AllUnix based machines

Operating System: Unix

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: Nonefor PVM, X11R4 for HeNCE

Cost: None
send email to netlib@ornl.gov
in the message type:
send index from pvm
send index from hence

Supplier: OakRidge National Laboratory
University of Tennessee

Contact: pvm@msr.epm.ornl.gov
hence@msr.epm.ornl.gov

See reference65 66 67 68

- 70 -

2.3 P4

Functions:

• Subroutine library for parallel programming

• Monitors for the shared-memory model

• Message-passing for the distributed-memory model both on heterogeneous
workstation networks and on parallel machines themselves

• Monitors and message-passing for cluster model

• Trace generation for performance monitoring

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Not installed for general use because it was redundant with PVM
• Some experiments showed that it ran slower than PVM.

(By Timothy Mattson, Craig Douglas, and Martin Schultz of Intel)

• Round trip point-to-point communication is faster than PVM,
C-Linda, and CPS.

Useful to NAS: Maybe
(User experience needed)

Platforms: CM-5,Intel Delta, iPSC/860, BBN TC-2000
and GP-1000, IBM 3090, Cray X-MP,
Alliant FX/8, FX/2800, and CAMPUS,
Sequent Symmetry (both Dynix and PTX),
nCube Sun3, Sun4, IBM RS-6000, Stardent
Titan, NeXT, DEC, SGI, HP

Operating System: Provided by each platform

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
info.mcs.anl.gov
pub/p4/p4-1.2.tar.Z

- 71 -

Supplier: Argonne National Laboratory

Contact: RustyLusk
(708) 252-7852
lusk@mcs.anl.gov

See reference69 70

- 72 -

2.4 TCGMSG (Theoretical Chemistry Group Message Passing Toolkit)

Functions:

• A message-passing library for both shared-memory parallel computers
and distributed-memory parallel computers

• The programming model and interface directly modeled after
(a small subset of) the PARMACS (See PARMACS entry)

• Support for communication over network through TCP sockets
• Support for communication through shared memory if available

• Straightforward load balancing

• Data representation conversion for Fortran integer and double precision
data types and C character data

Evaluation:

(By Timothy Mattson, Craig Douglas, and Martin Schultz of Intel)

• Round trip point-to-point communication is faster than P4, PVM,
C-Linda, and CPS.

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms)

Platforms: IntelDelta, iPSC/860,
KSR1, Alliant FX/8/80/800/2800, ARDENT,
Convex C220, IBM R6000, HP, Sun, Dec, SGI

Operating System: KSR OS (KSR1)
Concentrix 2800 2.2 (Alliant)
Sun O/S 4.0 or above (SUN)
IRIX 4.0 (SGI)
ULTRIX (DEC)
Stardent Titan O/S 2.2 (ARDENT)
ConvexOS V8.1 (Convex)
AIX 3.1 (IBM)
HP-UX A.B8.05 (HP)

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
anonymous ftp from ftp.tcg.anl.gov
in pub/tcgmsg/tcgmsg.4.02.tar.Z

- 73 -

Supplier: MailStop K1-90
Battelle Pacific Northwest Laboratory
P.O. Box 999, Richland WA 99352

Contact: RobertJ Harrison
(509)-375-2037
rj_harrison@pnl.gov

See reference71 70

- 74 -

2.5 CANOPY

Functions:

• A runtime library for developing efficient grid-oriented algorithms
on massively parallel MIMD systems

• SPMD programming paradigm

• Application-oriented programming concepts:

• Grids: with connectivity along directions (Grid structure can
be pre-defined, arbitrary, and user-defined.)

• Sites on the grid: with neighboring sites defined by the
connectivity

• Fields of data: consisting of one realization of a structure on
each site

• Links: corresponding to the connections between sites along
various directions, and fields defined on the links rather than
the sites

• Tasks: performing computation over a set of sites
• Ordered sets of sites
• Maps: to move from one defined grid to another

• A paradigm:

• A site represents a virtual processor with fields in its local
memory

• A task implies that all the virtual processors are computing
in parallel

• A Canopy program:

• A declaration section for grids, fields, sets, and maps
• A control part calls tasks to be executed in parallel
• The task routine to be executed on each processor

• Automatic data and task distribution and communication

• A tool that allows an SGI host to monitor a job and display information
about job execution status, time limits, and disk and tape sets mounted

• A spooler which handles the assignment of resources so that a queue
of jobs can be submitted to multi-user time sharing

- 75 -

Evaluation:

(By Glenn Kubena, Kenneth Liao, Larry Roberts of IBM)

Strengths:

• Well suited to applications whose domain can be represented
by grids

• No new language or extensions for user to learn
• Relatively mature

Weaknesses:

• Currently limited to the ACPMAPS machine at Fermilab
• User must be cognizant of and observe certain programming

restrictions to write programs successfully with Canopy
• Lack of debugging and performance tuning tools

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms)

Platforms: Sequent,Weitek-based 5GF ACPMAPS,
50GF i860-based ACPMAPS,
(Being ported to the Intel DELTA, iPSC/860,
and Paragon) (Not suitable for vector
machines and SIMD systems)

Operating System: POSIX-like system calls

Languages Supported: C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None(with restrictions)

Supplier: ComputingDivision
Fermi National Accelerator Laboratory
Batavia IL 60510

Contact: MarkFischler
(708) 840-4339
mf@fnal.fnal.gov

See reference72 73 1

- 76 -

2.6 CPS (Cooperative Processes Software)

Functions:

• A l ibrary of routines callable from Fortran or C code

• Supports computational task distributed across a heterogenous
mix of UNIX machines.

• Explicit message passing for task parallelism
• "Call and queue" for implicit parallelism
• Efficient bulk data transfer
• Process classes for grouping the processes to execute the same

program on same kind of computer
• Remote procedure call
• Synchronization

• A job manager for the construction and execution of parallel programs

• Starting, stopping, and monitoring processes
• Managing queues
• Dynamic process allocation on a per class basis

• MIMD model (within each class, a single program is run)

• Support for host-node, client-server, and input-processing-output
topologies as well as user customized topologies

• XOPER: an X-window based computer operator programs which supports
mount requests, messages, etc to operations.

• CPS_XPSMON mulitple process performance monitoring tool (a terminal
base version is also available)

• CPS_PSMON: a terminal based performance monitoring tool

• JMDB: a distribute processing debugging tool

Evaluation:

(By B. Traversat at NASA Ames Research Center (Previously at
Superconducting Super Collider (SSC)))

• Unreliable when more than 30 workstations are used in a network

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms)

- 77 -

Platforms: SGIIRIX, IBM RS6000, DEC (VMS VAX), Sun,
HP, and MIPS workstations, and ACPR3000
boards in use at Fermilab;

Interconnection networks supported include
Ethernet, VME-based bus communications,

and internal buses on multiple-processor
workstations.

Operating System: UNIX, provided by each platform
(VMS Vaxes are also currently supported)

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None(with restrictions)

Supplier: ComputingDivision,
Fermi National Accelerator Laboratory

Batavia IL 60510

Contact: Kevin Q. Sullivan
(708) 840-8782
kevins@baja.fnal.gov
or
cps_req@fndp1.fnal.gov

See reference74 75 76 77 78

- 78 -

2.7 PARMA CS

Functions:

• A message-passing programming interface for both shared-memory
parallel computers and distributed-memory parallel computers

• Macros for process management, message-passing, and
synchronization

• Macros for process/processor mapping (torus, graph, and
embedded tree for global communication)

• Macros for dynamic torus remapping and switch dimensions
between 3D and 2D

• Libraries for linear algebra and for grid-based applications

• Performance analysis tools

• Visualization of process states and communication (post-mortem)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms)

Platforms: InteliPSC/860, Meiko CS-Tools, nCUBE 2,
Parsytec GC, CRAY Y-MP, A network of DEC,
IBM RS/6000, SGI, and SUN workstations

Operating System: None

Languages Supported: Fortran77, PARMACS 6.0: Fortran77, C

Languages Used in Implementation: C

Graphic User Interface: X11R3(or later) for the performance analysis tools

Cost: DM2,000 on a workstation
DM 10,000 on CRAY

Supplier: PALLAS GmbH
Hermuelheimer Strasse 10
5040 Bruehl
Germany

GMD
Postfach 1316
5205 St. Augustin
Germany

- 79 -

Contact: Distribution, general information:
Karl Solchenbach
+49-2232-1896.0
karls@pallas-gmbh.de

Development of programming interface:
Rolf Hempel
+49-2241-14.2575/2757
Rolf.Hempel@gmd.de

See reference79 80 81 82

- 80 -

2.8 PICL (A Portable Instrumented Communication Library on Intel)

Functions:

• Library routines for writing parallel programs on message-passing
computers

• Process management
• Message passing
• Synchronization
• Global operations

• Trace generation for performance monitoring (visualized by ParaGraph).

Evaluation:

(Compiled by Diane Rover and Joan Francioni of Michigan State University)

• Mostly used to generate a trace for visualization using ParaGraph83

Useful to NAS: Maybe,in conjunction with ParaGraph
(User experience needed)

Platforms: iPSC/2,iPSC/860, Delta, Paragon
Ncube/3200, Ncube 2, Cogent, mpsim

Operating System: Provided by each platform

Languages Supported: Fortran77, C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
available from netlib@ornl.gov

Supplier: OakRidge National Laboratory
Oak Ridge, TN

Contact: Pat Worley
(615) 483-8111
worley@msr.epm.ornl.gov

See reference84

- 81 -

2.9 APPL (Application Portable Parallel Library)

Functions:

• A subroutine-based library of communication primitives
• Support for shared and distributed memory MIMD machines, and

networks of workstations

Evaluation:

(By Kyung Ahn, Scott Townsend, and Suresh Khandelwal of
NASA Lewis Research Center)

Applications:

• MHOST: A finite element program for nonlinear analysis of
aerospace propulsion system structures

• MSTAGE: A multistage viscous turbomachinery program
• PARC3D: A 3-dimensional fluid dynamics code calculating

the thermodynamic properties of a fluid flow

Strengths:

• Simple to understand, easy to use
• The code portable to different platforms
• Easy to install the system

Weaknesses:

• Lack of global operations on groups
• Different definition of synchronous/asynchronous send/receive

operations with that supplied by vendors

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Similar tools support more NAS platforms)

Platforms: iPSC/860,Delta, Alliant FX/80, Hypercluster
(a NASA LeRC multi-architecture test bed),
SGI, Sun Sparc, IBM RS6000 workstations.

Operating System: Provided by each platform

Languages Supported: Fortran, C

Languages Used in Implementation: C and Fortran

Graphic User Interface: None

Cost: None(with permission)

Supplier: NASA Lewis Research Center

- 82 -

Contact: AngelaQuealy
(216) 826-6642
fsang@kira.lerc.nasa.gov

See reference85

- 83 -

2.10 PARTI (Parallel Automated Runtime Toolkit at ICASE)

Functions:

• Runtime preprocessing procedures:

• Coordinate interprocessor data movement.
• Manage the storage of and access to copies of off-processor data.
• Upport a shared name space.
• Couple runtime data and workload partitioners to user programs.

• Accessible directly by programmers

Useful to NAS: Maybe
(User experience needed)

Platforms: iPSC/860,Delta, NCUBE, CM5,
a network of workstations

(Versions of Parti are built on top of Intel,
CM-5 message passing calls, PVM, and Express)

Operating System: Provided by each platform

Languages Supported: C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
ftp : hyena.cs.umd.edu

in pub/parti_distribution and
block_parti_distribution

Supplier: University of Maryland

Contact: RajaDas
(301) 405-2693
raja@cs.umd.edu

See reference86 87 88 89

- 84 -

2.11 CM (Communications Manager)

Functions:

• Library routines for job-level parallel execution on a network of
heterogeneous machines

• Facilities for specifying the applications to be executed, their input
and output arguments, and any explicit precedence instructions
(Interactive applications cannot be included unless the IO can be
redirected using files.)

• Communication Services:

• TCP/IP based application to application connection and inter-process
communication library for heterogeneous platforms

• File transfer in program-to-program space (To transfer files the
nodes need not be sharing file systems via NFS or ftp or uucp.)

• Directory Services:

• TCP/IP based directory services for groupwork
• Support for dynamic definition, registration besides lookup of

networked resources
• Support for interaction between applications using symbolic

references rather than network addresses
• Transparent client migration when a server migrates from one

host to another

• Application Management System:

• TCP/IP and Unix based network application invocation utility
• Automatic transport of input files and output files to and

from the client site to the application site
• Security enforcement using the Directory Services in that only

registered users may execute and only from registered machines

• Task Management System:

• Analysis of dependencies between jobs based on a user-defined
task description file

• Generation of a maximally concurrent activation data flow chart
• Synchronization between jobs if there is input/output dependency

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Job-level parallelism only)

- 85 -

Platforms: SunSparcs, DEC2000 ,DEC3000, DEC5000,
SGI workstations

Operating System: SunOS, DEC/Ultrix, SGI/IRIX OS

Languages Supported: C

Languages Used in Implementation: C, TCP/IP, UNIX/OS (mostly POSIX compliant)

Graphic User Interface: None

Cost: None

Supplier: ConcurrentEngineering Research Center
West Virginia University
Morgantown, WV 26505

Contact: RamanKannan
kannan@cerc.wvu.wvnet.edu

See reference90 91 92 93

- 86 -

2.12 SPPL (The Stuttgart Parallel Processing Library)

Functions:

• A message-passing library for a heterogeneous distributed memory system

• Support for abstract data types for messages

• Simple data types
• Arrays and records
• Arbitrary pointer structures

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platforms: IBMRISC System/6000
Sun, DEC workstations

Operating System: AIX 3.2, SUN OS 4.1, ULTRIX 4.2

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: $100
$35 for educational and research institutions

Supplier: Institutefor Parallel and Distributed
High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22
W-7000 Stuttgart 80
Germany

Contact: Prof.Andreas Reuter
(+49) 711 7816 449
Andreas.Reuter@informatik.uni-stuttgart.de

See reference94

- 87 -

2.13 LMPS (The Livermor e Message Passing System)

Functions:

• A l ibrary of routines that implements an efficient message passing
system on the BBN TC2000

• Support for synchronous and asynchronous (blocking and non-blocking)
message passing, and selective reception of messages based on type
and source

• Integrated with the PCP/PFP environment (See entry for PCP/PFP)

Useful to NAS: No
(User experience needed,
Does not support NAS platforms)

Platform: BBNTC2000

Operating System: UNIX

Languages Supported: Fortran77, C

Languages Used in Implementation: C, PCP

Graphic User Interface: None

Cost: None

Supplier: Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Contact: Tammy Welcome
(510) 422-4994
tsw@mpci.llnl.gov

See reference95

- 88 -

2.14 MTASK (The MultiT ASKing package)

Functions:

• A multitasking library for forking of tasks from within code that
is already executed in parallel or code that is recursive in nature

• Semaphores for mutual exclusion

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platforms: Alliant/FX,Alliant/FX2800

Operating System: Concentrix (Alliant Unix)

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: CSRD
University of Illinois

Contact: BrianBliss
(217) 244-5569
bliss@csrd.uiuc.edu

- 89 -

2.15 GENMP (GENeric MultiProcessor)

Functions:

• A run time library for MIMD computer architectures

• Dynamic load balance and interprocessor communication

• Designed for particle methods and for uniform mesh methods that
apply computational effort non-uniformly over the mesh.

Useful to NAS: No
(User experience needed,
Does not support all NAS platforms,
For particle methods only)

Platforms: iPSC/860,Cray Y-MP, Sparcstation

Operating System: Supported by each plotform

Languages Supported: Fortran77

Languages Used in Implementation: Fortran 77

Graphic User Interface: None

Cost: None
anonymous ftp cs.ucsd.edu
in pub/baden/genmp

Supplier: University of California at San Diego

Contact: Prof.Scott B. Baden
(619) 534-8861
sbaden@ucsd.edu

Scott Kohn
(619) 534-5913
skohn@ucsd.edu

See reference96

- 90 -

3. Debugging and Performance Tuning Tools

Twenty three tools described in this part are for debugging parallel programs and
tuning their performance.Section 3.1 presents three environments integrating both types
of tools. Section 3.2 describes the tools that are for debugging only. Section 3.3 lists the
tools that are designed for performance tuning.As a result of visualizing program behav-
ior, howev er, many tools in the last section can also assist debugging.

The order of presentation in each section is based on their usefulness to NAS (plat-
forms, and languages supported), their relative maturity, and the amount of support from
the suppliers.For tools with the same rating, they are listed in alphabetic order.

- 91 -

3.1 Integrated Systems

3.1.1 PRISM

Functions:

• Integrated graphical debugger, performance analysis tool, and data
visualizer

• Automatic and consistent update for displays of debugging data,
performance data, and source code

• Command alias

• System resource control (e.g. attach/detach sequencers, boot)

• Dynamic linking of programs

• Source-level debugger:

• Breakpoints
• Single step
• Watch points for events
• Expression evaluation
• Trace
• Stack, memory, and register examination

• Performance analysis:

• Procedure level and statement level performance statistics for
a specified resource or subsystem

• Advices to assist isolating performance bottleneck

• Visualization:

• Graphical display for data values or ranges
• Performance statistics for resources

Evaluation:

(By Al Globus at NASA Ames Research Center)

• The best feature is is that it incorporates regular field
visualization techniques to examine large arrays quickly.

Useful to NAS: Yes

- 92 -

Platforms: CM2,CM200, CM5

Operating System: CMOS, CMOST

Languages Supported: C, Fortran (TMC version)

Languages Used in Implementation: C

Graphic User Interface: XMotif

Cost: Bundledwith system

Supplier: ThinkingMachine Co.
245 First St.
Cambridge, MA 02142-1264

Contact: (617)234-4000
(617) 876-1111
customer-support@think.com

See reference97

- 93 -

3.1.2 MPPE (MasPar Programming Envir onment)

Functions:

• Integrated graphical debugger, performance profiler, and visualizer,
with client-server architecture for remote debugging

• Static analysis of parallel programs and graphical display of run-time
profile information

• Automatic and consistent update for displays of stack, source code,
and data after each skip, step, and continue during debugging

• Source-level debugging of parallel C and Fortran 90 code:

• Step, skip, continue
• Conditional breakpoints
• Data inspectors
• Evaluation of parallel C and Fortran 90 expressions
• Graphical display of variable history
• Animation of step, skip, continue (automatic repetition of commands)
• Debugging optimized code

• Performance analysis:

• Statement level and routine level profiling
• Compiler-generated information relating to performance
• Graphical display of profile histograms with source code
• Summary pages for statement and routine level profiles
• Profiling of optimized code

• Visualizer:

• Processor array state
• 2D visualization of variables, expressions

Useful to NAS: Maybe
(User experience needed
if NAS provides MP-1, MP-2)

Platforms: Userinterface on DecStation and SPARC
The program to be debugged on MP-1 or MP-2

Operating System: DecStation- Ultrix 4.2, SPARC- SunOS 4.1.1

Languages Supported: C, Fortran77, MasPar Fortran, MPL

Languages Used in Implementation: Smalltalk and C++

Graphic User Interface: DecStation-Motif, SPARC- OpenWindows

- 94 -

Cost: Oneconcurrent use license free with
MasPar system. Additional licenses $2500
per concurrent use.

Supplier: MasPar Computer Corporation
749 N. Mary Avenue
Sunnyvale, CA 94086

Contact: HelenAsher
(408) 736-3300

See reference98

- 95 -

3.1.3 PARASPHERE

Functions:

• An integrated environment with OSF/Motif-like graphical interface

• High Performance Fortran with interface to C and Fortran 77

• DECmpp Programming Language (DPL), a C-like programming language

• System level commands for accessing the DECmpp 12000 Data Parallel
Unit (DPU)

• An interactive parallel source-level debugger

• Expression evaluation (DPF or DPL syntax)
• Conditional breakpoints
• State log and replay

• A profiler for analyzing program runtime statistics

• Hierarchical and static profiling

• A call graph browser for viewing call relationships between program
functions, files, and directories in graphic form

• A cross-referencer for determining where names are declared, defined,
or referenced in a program

• DECmpp VAST-2 that translates Fortran 77 source code to DECmpp
High Performance Fortran

• Data dependency analysis
• Safe loop transformation
• Splitting of common blocks and separate scales from arrays
• User directives and switches for interactive control of

transformation
• Examination of EQUIVALENCE statements to detect hidden

recursion
• Subroutine and function inlining

Useful to NAS: Maybe
(User experience needed
if NAS provides DECmpp)

Platforms: DECmpp12000/Sx, 12000

Operating System: ULTRIX V4.2A

Languages Supported: C, Fortran, DPL, DECmpp
High Performance Fortran

Languages Used in Implementation: C and C++

- 96 -

Graphic User Interface: Motifinterface XIPD in late 1993

Cost: Bundledwith system

Supplier: DigitalEquipment Corporation
146 Main Street, MLO1-3/B11
Maynard, Massachusetts 01754

Contact: Mike Fishbein
fishbein@rdvax.enet.dec.com

See reference99

- 97 -

3.2 Debuggers

3.2.1 TOTALVIEW

Functions:

• Multi-process debugger

• Less-intrusive (It does not require any special libraries to be linked
and allows code and conditional breakpoints to run as compiled code.)

• Ability to patch with compiled code

• Expression evaluation facility

• Evaluated breakpoints

• Multi-process breakpoints

• Integration with GIST for event logging (see BBN Performance Tools)

• Graphical interface for program control and breakpoint setting

• Ability to attach to running processes

• Ability to attach to processes created by fork

• Ability to debug a program running on a remote workstation

• Ability to communicate with the target system through shared memory,
TCP/IP, or a serial line

• Ability to download code to an embedded system from a host for cross
development purposes

Useful to NAS: Maybe
(User experience needed
if NAS provides CRAY MPP)

Platforms: BBNGP1000 and TC2000
Tadpole TP885v, FASP, Motorola 680x0, 88100
Sun SPARC, AT&T DSP32C
(In process of porting to CRAY MPP)

Operating System: Implementations available for SunOS, pSOS,
Lynx Realtime O/S, BBN nX, and hardware
with no operating system

Languages Supported: C, C++, Fortran

Languages Used in Implementation: C++

- 98 -

Graphic User Interface: X11R4

Cost: Embeddedsystem solution typically $16K for the
license plus the cost of porting to the given system

Pricing for the Sparc version announced in the future

Supplier: BBNSystems and Technologies

Contact: David Rich
(617) 873-2634
drich@bbn.com

See reference100

- 99 -

3.2.2 UDB (KSR symbolic debugger)

Functions:

• Breakpoints

• Examining and displaying data

• Examining the stack

• Specifying and examining source files

• Alias and user-defined commands

• Editing the command line

• Window status and control

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

• Functional and helpful

Useful to NAS: Maybe
(User experience needed
if NAS provides KSR1)

Platform: KSR1

Operating System: KSR OS

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: X11R5

Cost: Bundledwith system

Supplier: Kendall Square Research
170 Tracer Lane
Waltham, MA 02154

Contact: Steve Breit
(800) 669-1577
sbreit@ksr.com

See reference101

- 100 -

3.2.3 IPD

Functions:

• Source-level parallel debugger

• Breakpoints
• Watchpoints
• Data display and modification
• Source listing
• Register display
• Disassembler
• Stack traceback
• Debugger environment variables and command aliases
• Run-time instrumentation of programs for profiling and event

tracing (No special compile or link options necessary)

• Extensions to support distributed-memory parallel programs

• Message queue display
• All commands applicable for one or multiple processes
• Control for separating debugger I/O from application I/O

• Menu-driven graphical interface (release 1.1)

• Integration with the performance analysis tools (release 1.1)

• Debug session logging facility

Useful to NAS: Maybe
(User experience needed)

Platforms: iPSC/860,planned for Paragon

Operating System: NX on iPSC/860, Paragon OSF/1 on Paragon

Languages Supported C, Fortran77

Languages Used in Implementation: C and C++

Graphic User Interface: Motifinterface XIPD in late 1993

Cost: Bundledwith system

Supplier: IntelSupercomputer Systems Division

Contact: IntelSSD Support
1-800-421-2823
support@ssd.intel.com

See reference102

- 101 -

3.2.4 XAB

Functions:

• Preprocessors and libraries for instrumenting PVM programs

• A monitoring process for collecting trace information as the program
executes

• Graphic display of events and PVM calls

• A script for converting xab tracefiles to PICL tracefiles for use with
Paragraph

Useful to NAS: Maybe
(User experience needed)

Platforms: Unixbased system where PVM runs

Operating System: UNIX

Languages Supported: C, Fortran77

Languages Used in Implementation: C, CPP, m4, awk

Graphic User Interface: X11R4,Athena widgets

Cost: None

Supplier: Schoolof Computer Science and
the Pittsburgh Supercomputer Center
Carnegie Mellon University

Contact: AdamBeguelin
(412) 268-7866
adamb@cs.cmu.edu

See reference103

- 102 -

3.2.5 XPDB

Functions:

• A graphic debugger for programs using SPPL (see SPPL entry)

• Examining message passing
• Viewing hierarchical dataflow graph
• Inv oking sequential source code debuggers

• Facilities to print the data in selected messages

• Automatic selection of the appropriate print format depending on the
abstract data type of the message

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms,
Limited to programs using SPPL)

Platforms: IBMRISC System/6000
Sun, DEC workstations

Operating System: AIX 3.2, SUN OS 4.1, ULTRIX 4.2

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: XWindow System X11R4 (or higher)

Cost: $200
$65 for educational and research institutions

Supplier: Institutefor Parallel and Distributed
High Performance Systems (IPVR)
University of Stuttgart
Breitwiesenstr. 20-22
W-7000 Stuttgart 80
Germany

Contact: Prof.Andreas Reuter
(+49) 711 7816 449
Andreas.Reuter@informatik.uni-stuttgart.de

See reference94

- 103 -

3.2.6 EXECDIFF

Functions:

• Library routines for specifying the data objects to be monitored
during execution

• Value Monitoring for the specified data objects in two versions of
a program

• Specification of a tolerance for the difference in floating point
numbers

• Value comparison for the data objects generated by executing the two
versions to assist debugging

Useful to NAS: No
(User experience needed,
Does not support NAS platforms,
Limited to debugging programs
ev olved from a correct version)

Platforms: AlliantComputers

Operating System: Unix (Berkeley or System V)

Languages Supported: C, Fortran

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: Centerfor Supercomputing Research & Development
University of Illinois

Contact: BrianBliss
(217) 244-5569
bliss@csrd.uiuc.edu

- 104 -

3.3 Performance Tools

3.3.1 ATEXPERT

Functions:

• Performance monitoring and visualization

• Instrumentation of parallel regions indicated by the Autotasker and
the serial sections of code (with 10%-20% overhead)

• Program
• Subroutines
• Parallel regions
• Parallel loops

• Graphical displays of performance data

• Time spent in program segments
• Number of processors on which a code segment is running

• Prediction for speedups on a dedicated system from data collected
from a single run on a nondedicated system

Evaluation

(By Robert J. Bergeron of NASA Ames Research Center)

Strengths:

• Easy to use and provides flexible operation.
• Provides a detailed insight into parallel execution on

Cray architectures.
• Text identifies many specific regions and causes of poor

parallel performance.
• Visual display allows user to form their own judgements.

Weaknesses:

• Requires a strong understanding of Cray parallel processing
and online help is insufficient.

• Basis for text judgements of poor parallel performance is not
available (would be available on a true "expert" system).

• Emphasizes predictive capability whereas its main value is
providing insight.

Useful to NAS: Yes

Platforms: CRAY Y-MP, X-MP EA, X-MP, CRAY-2
Display on SGI and Sun

Operating System: UNICOS 6.0
FMP of the CF77 compiler release 4.03 or above

- 105 -

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: XWindows (ASCII available)

Cost: Bundledwith system

Supplier: CrayResearch Inc.
2360 Pilot Knob Rd.
Mendota Heights, MN 55120

Contact: (612)681-5907

See reference104

- 106 -

3.3.2 INTEL PERFORMANCE ANALYSIS TOOLS (release 1.1)

Functions:

• Based on ParaGraph

• Motif-based menu-driven graphical interface

• Animation of the execution of parallel applications derived from trace
information gathered during program execution

• Graphical summaries and statistical analysis of overall program behavior

• Pause/resume, single-step, slow down, or restart an animation from
any point.

• Processor usage
• Frequency, volume and overall pattern of inter-processor

communications
• Critical Path displays
• Task displays relating processors with the part of the

executing parallel code

Useful to NAS: Maybe
(User experience needed)

Platforms: iPSC/860,Paragon

Operating System: NX on iPSC/860, Paragon OSF/1 on Paragon

Languages Supported: C, Fortran77

Languages Used in Implementation: C and C++

Graphic User Interface: Motifinterface XIPD in late 1993

Cost: Bundledwith system

Supplier: IntelSupercomputer Systems Division

Contact: IntelSSD Support
1-800-421-2823
support@ssd.intel.com

See reference105

- 107 -

3.3.3 PARAGRAPH

Functions:

• Trace-based performance visualization of message-passing parallel
programs (trace data generated by PICL, see entry for PICL)

• Dynamic, graphical depiction of processor utilization, communication
traffic, load balance, and other aspects of program behavior and
performance

Evaluation:

(By Diane Rover and Joan Francioni of Michigan State University)106

Applications:

• Teaching parallel computing and programming to novices pre-college
students

• Teaching parallel computing and programming to advanced graduate
students

• SLALOM: solves a radiosity problem in which the walls of a room
are decomposed into patches. Computation time typically is dominated
by the solution of a symmetric matrix using Gaussian elimination and
back substitution techniques (on nCUBE-2, 128 nodes)

Strengths:

• Widely used
• Achieved considerable success when used to introduce parallel

computing and programming to novices.
• Provided a common introduction and foundation for similar tools,

and students could readily gain hands-on experience with it in
self-paced laboratory exercises.

• PICL and Paragraph provided valuable assistance in studying and
optimizing the SLALOM program.

Weaknesses:

• Considerable effort is required to selectively trace large programs
or view only parts of a large trace file.

• Considerable effort is required to selectively reduce the trace
data generated for runs with many processors.

• Movement through the trace file during ParaGraph simulation is
constrained.

• There is no corresponding view of the source program.
• Inv oking user-/application-specific views requires creating separate

executables of ParaGraph.
• Comparison of data from multiple trace files requires running multiple

instances of ParaGraph.

- 108 -

Suggestions based on experience:

• Prototyping views using the commercially-available and
general-purpose tools AVS and MatLab

• Integrate the tested views into ParaGraph.

Useful to NAS: Maybe
(User experience needed)

Platforms: Unixworkstation with X Windows

Operating System: UNIX

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: XWindows (Xlib, no toolkit)

Cost: None

Supplier: OakRidge National Laboratory
and University of Illinois

Contact: MichaelHeath
(217) 333-6268
heath@ncsa.uiuc.edu

See reference107

- 109 -

3.3.4 KSR PERFORMANCE TOOLS

Functions:

• Prof for displaying profile data produced by the monitor subroutine

• Percentage of time spent in a subroutine
• Number of times called
• Number of milliseconds per call
• A summary of profile (for multiple profile files)

• Gprof for displaying call graph profile data

• A performance monitoring library for per-thread performance data

• Performance data from the event monitor, hardware registers,
and the kernel (user-time, wall-clock-time cache hits/misses,
thread migration, etc.)

• Functions for accessing performance data
• Functions for timing

Evaluations:

(By Donna Bergmark at Cornell TheoryCenter)

Strengths:

• The timer is good.

Weaknesses:

• Does not measure elapsed time across parallel jobs.

Useful to NAS: Maybe
(User experience needed
if NAS supports KSR1)

Platform: KSR1

Operating System: KSR OS

Languages Supported: Fortran77, C

Languages Used in Implementation: C

Graphic User Interface: None

Cost: Bundledwith system

Supplier: Kendall Square Research
2102 Business Center Dr.
Waltham, MA 02154-1379

- 110 -

Contact: Steve Breit
(800) 669-1577
sbreit@ksr.com

See reference101

- 111 -

3.3.5 BBN PERFORMANCE TOOLS

Functions:

• GIST: An event logging and display tool

• Events logging from within the user application

• Kernel events (i.e. page swaps)
• User defined events through subroutine calls

• Graphic displays for the events and/or states

• ProfView: a statistical profiler

• An extension of the standard Unix prof/gprof utilities

• Profiling data collection at the subroutine, source line or
instruction level

• Data display along with a graph of time spent in each area

• Multi-threaded program profiling and very light-weight profiling
which produces only histograms

Useful to NAS: Maybe
(User experience needed
if NAS provides KSR1)

Platforms: BBN"Butterfly" series
KSR1
(GIST being ported to Sun Sparc)

Operating System: BBN nX, SunOS, KSR OS

Languages Supported: C, C++, Fortran

Languages Used in Implementation: C, C++

Graphic User Interface: X11R4
X11R5 for KSR1

Cost: $16,000for GIST + ProfView on the
TC2000 / GP1000. On KSR-1, the cost
is bundled with the machine. Pricing
for Sun and HP will be released.

- 112 -

Supplier: BBNSystems and Technologies
and Kendall Square Research

Contact: David Rich
(617) 873-2634
drich@bbn.com

Steve Breit
(800) 669-1577
sbreit@ksr.com

See reference100

- 113 -

3.3.6 AIMS (The Ames InstruMentation System)

Functions:

• A source code instrumentor which automatically inserts event recorders
into program source code before compilation

• A run-time performance monitoring library which collects performance data

• A visualization tool-set which reconstructs program execution based on
the data collected

• Being incorporated into the run-time environments of various parallel
testbeds to evaluate their impact on user productivity

Evaluation:

(By Diane Rover and Joan Francioni of Michigan State University)106

Strengths:

• Compared with ParaGraph, AIMS offers greater control over the
simulation replay, and a more flexible user interface

Weaknesses:

• More complicated than ParaGraph

Useful to NAS: Maybe
(User experience needed)

Platforms: Monitorsthe execution of applications
on the iPSC/860 and iPSC/Delta
The graphical interface on SunSparc and SGI

Operating System: NX

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: X11R5and Motif

Cost: None

Supplier: NASA Ames Research Center

Contact: JerryYan
(415) 604-4381
jerry@ptolemy.arc.nasa.gov

See reference108

- 114 -

3.3.7 PABLO PERFORMANCE AN ALYSIS ENVIRONMENT

Functions:

• A Motif-based interface for the specification of source code
instrumentation points (both trace and count data)

• A C parser that can generate instrumented application source code

• A performance data trace capture library for single processor Unix
systems and for the Intel iPSC/2 and iPSC/860 hypercubes

• A self-documenting data metaformat and associated tools that can be
used to describe and process diverse types of data

• A graphical performance analysis environment

Useful to NAS: Maybe
(User experience needed)

Platforms: Trace generation on Intel iPSC/2 and
iPSC/860, Sun, (working on CM5)
Visualization on SPARC2-GX

Operating System: SunOS 4.1.2 for visualization

Languages Supported: C, (working on Fortran)

Languages Used in Implementation: C (GNU g++/gcc 2.3.1 or ATT Cfront version 3.0.1)
perl 3.0

Graphic User Interface: X11R5(patch level 19), Motif release 1.2.1

Cost: None(license required for commercial use)
ftp bugle.cs.uiuc.edu (128.174.237.148)

Supplier: University of Illinois at Urbana Champaign

Contact: DanielA. Reed
pablo@bugle.cs.uiuc.edu

See reference109

- 115 -

3.3.8 IPS-2

Functions:

• Performance monitoring, analysis, and visualization

• Critical path analysis and visualization

• Support for the analysis of multiple applications and multiple runs of
the same application in a single measurement session

• Support for dynamic on-the-fly user selection of what performance data
to collect with decision support to assist users with the selection and
presentation of performance data

Useful to NAS: Maybe
(User experience needed)

Platforms: Y-MP, Sequent Symmetry, Sun (SunOS 4.1,
Solaris 2.0), DECstation

Operating System: UNIX

Languages Supported: Fortran, C

Languages Used in Implementation: C

Graphic User Interface: X11

Cost: $300for source
No charge to universities

Supplier: Univ. of Wisconsin

Contact: BartonP. Miller
(608) 263-3378
bart@@cs.wisc.edu

See reference110 111 112

- 116 -

3.3.9 FALCON

Functions:

• A tool for on-line monitoring and visualization of programs using
a parallel cthreads library on shared-memory machines

• A view specification language:

• Specifying sensors
• Predefined collection of probes, sensors, and views

• Interactive program instrumentation:

• Software sensors for generating trace data synchronously
with the program execution

• Software probes for generating trace data only in response
to an asynchronous request by the user or the monitoring system

• Trace Visualization:

• Animated graphical displays of the program run-time performance
and behavior (generated with the POLKA program animation system,
see entry for POLKA)

• Built-in graphical views
• User-defined views

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support Fortran)

Platforms: KSR-1,Sequent Symmetry, GP-1000 BBN Butterfly,
Silicon Graphics multiprocessor, SPARC

Operating System: SUN OS, Mach1000

Languages Supported: C

Languages Used in Implementation: C and C++

Graphic User Interface: X11R4,Open windows

Cost: None

Supplier: College of Computing
Georgia Institute of Technology

- 117 -

Contact: Weiming Gu
(404) 894-3982
weiming@cc.gatech.edu

Karsten Schwan
(404) 894-2589
schwan@cc.gatech.edu

See reference113

- 118 -

3.3.10 VOYEUR

Functions:

• Library routines for trace generation and inspection

• Compiler option for parallel program profiling

• Run time statistics for performance analysis:

• Amount of code running in parallel and serial
• Performance prediction for a program on other Convex systems

Useful to NAS: No
(User experience needed,
Does not support NAS parallel platforms)

Platforms: AllConvex Series of Supercomputers

Operating System: CONVEXOS

Languages Supported: Fortran, C

Languages Used in Implementation: Fortran

Graphic User Interface: None

Cost: None

Supplier: Convex Computer Corp.
European Headquarters
Randalls Research Park
Randalls Way
Leatherhead, Surrey
KT22 7TS
United Kingdom

Contact: RonaldW Gray
(44) 372-386696
gray@convex.com

- 119 -

3.3.11 UPSHOT

Functions:

• Analysis of execution trace produced by parallel programs

• Graphical tool for visualizing parallel program behavior

• Individual events and process states on parallel time lines
• Dynamic histogramming of state durations
• Primitive proportional-time animation
• Summary and detail information
• Zooming in and out and scrolling back and forth

Useful to NAS: Maybe
(User experience needed)

Platforms: Sun,SGI, RS-6000, DEC

Operating System: Supported by the platforms

Languages Supported: C, Fortran, Aurora Parallel Prolog, PCN

Languages Used in Implementation: C, with Athena widgets

Graphic User Interface: X11R4or later

Cost: None
ftp info.mcs.anl.gov
directory pub/upshot,
files upshot.tar.Z and alog.tar.Z

Supplier: Argonne National Laboratory

Contact: RustyLusk
(708) 252-7852
lusk@mcs.anl.gov

See reference114

- 120 -

3.3.12 MARITXU

Functions:

• A set of tools for visualizing massive amounts of trace data

• A trace-file format converter that converts an existing trace to the
format acceptable by Maritxu

• Animation of dynamic evolution through time

• Usage of processor resources (CPU load, queues, memory,
link communication)

• Current communication

• Topology of the network/subnetwork

• Information discrimination based on importance

• Highly scalable visualization for shared-memory and message-passing
multiprocessors, and for distributed computing (by applying recent
psychology discoveries in human perception to data presentation)

• A Set-up Manager for the user to set preferences, define icons,
map data, determine topology, define statistics, and for defining
the interface between the monitoring tool and Maritxu

Useful to NAS: Maybe
(User experience needed)

Platforms: MipsRS3260, MIPS 2030, SGI Indigo,
SGI 4D/340S

Operating System: UNIX

Languages Supported: Supported by Transputers and CM2

Languages Used in Implementation: C

Graphic User Interface: X11R4,Motif 1.1

Cost: TBD

Supplier: ComputerSystems Engineering
Dept. of Electronics
University of York
Heslington - York YO1 5DD
England

Contact: EugenioZabala
+ 44 904 432381
e-mail: ez@ohm.york.ac.uk

- 121 -

See reference115 116 117

- 122 -

3.3.13 GPMS (General Parallel Monitoring System)

Functions:

• Trace generation, filtering and transportation

• Visualization with a customized version of ParaGraph
(see entry ParaGraph)

Useful to NAS: No
(User experience needed,
Does not support NAS platforms)

Platforms: Transputer networks
Transputer+i860 networks

Operating System: Trollius

Languages Supported: C, Fortran77

Languages Used in Implementation: C

Graphic User Interface: X11R4

Cost: None

Supplier: Trollius
Ohio supercomputer center,
OH, USA

ARCHIPEL
PAE des glaisins
74940 Annecy le vieux
+33 5064 0666

Contact: gdburns@tbag.osc.edu

Bernard Tourancheau
Bernard.Tourancheau@lip.ens-lyon.fr

- 123 -

4. Parallelization Tools

Nine tools presented in this part are to assist in converting a sequential program to a
parallel program.Three different approaches to the conversion process are used.Section
4.1 lists the automatic conversion tools with user directives accepted for batch processing.
Section 4.2 presents the interactive conversion tools which interact with users during a
conversion process.The tools in the above sections use compiler analysis and transfor-
mation techniques to locate/create parallelism in a sequential code.The tools described
in Section 4.3 provide means for the user to specify parallelism in a program; the tools do
not attempt to discover parallelism.

- 124 -

4.1 Automatic Compilation

4.1.1 CRAY/fpp

Function:

• Automatic DO-loop parallelization

• Code transformation to take advantage of CRAY architecture

Evaluation:

(By Doug Pase and Katherine Fletcher through use)

• User interface is batch oriented.
• Uses static program analysis only.

Useful to NAS: Yes

Platforms: CRAY machines

Operating System: UNICOS, COS

Language Supported: Fortran

Graphic User Interface: None

Cost: Bundledwith system

Supplier: CrayResearch

See reference118 119

- 125 -

4.1.2 KAP/CRAY

Function:

• Automatic DO-loop parallelization

• Code transformation to take advantage of CRAY architecture

Evaluation:

(By Doug Pase and Katherine Fletcher through use)

• User interface is batch oriented.
• Uses static program analysis only.

Useful to NAS: No
(Provides similar functions
as provided by fpp)

Platforms: Y-MP, X-MP, Sun, Vax

Operating System: UNICOS, COS, UNIX, Ultrix

Languages Supported: Fortran

Graphic User Interface: None

Cost: Firstcopy $7,500/yr
Add’l copy $3,750/yr
Site license $15,000/yr

Supplier: Kuck and Associates

Contact: Davida Bluhm
(217) 356-2288

See reference119

- 126 -

4.2 Interactive Parallelization Tools

4.2.1 FORGE 90

Functions:

• A tool set for interactively parallelizing Fortran loops

• Analysis tools:

• Intra-procedural and inter-procedural dependency analysis
• Flow analysis

• Tools for viewing the results provided by the analysis tools:

• Reference tracing of variables and constants (use-def and
def-use chains)

• Exposing COMMON and EQUIVELENCE aliasing and COMMON
block inconsistencies

• Control and data flow from a global perspective
• In/out data dependencies between routines, basic code blocks,

or arbitrary blocks

• Parallelization of do-loops with/without subroutine calls

• Parallel/vector directives insertion for shared-memory parallel
machines

• Support for interactive user data decomposition (HPF)

• Generation of Fortran programs with message passing for
distributed-memory machines

• Conversion of a Fortran 77 program to a Fortran 90 program

• Automatic program instrumentation and parallelization guided by
run time statistics

• A database of static information of a program

- 127 -

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

Strengths:

• Very useful for traipsing through old dusty deck Fortran codes
• Its timing profile down to the loop level is very helpful
• Reliable and very responsive vendor support
• Highly recommended

Weaknesses:

• Does not parallelize certain loops that can be parallelized by PAT

(By Doreen Cheng of NASA Ames Research Center)

Applications:

NAS Benchmarks on dedicated Y-MP/8.
Forge version 7.01, 1990

Strengths:

• The interactive nature provides convenient access to
the tools and to information about the program.

• Useful in helping understanding a program developed by others
• Useful in achieving speedup without rewriting a program
• The most robust system in its kind.
• The user response time is reasonably fast.
• Responsive vendor support.

Weaknesses:

• Requires familiarity of compiler analysis terminology.

Suggestions:

• Code generation must take advantage of target architectures.
• Guidance to dependence elimination, code transformation and

parallelization will be very helpful.

Useful to NAS: Yes

Platforms: Generatescode for:
CRAY Y-MP, Intel iPSC/860, Delta,
Paragon, CM2, CM5, Clustered
Workstations using PVM or Express.

Runs on all Suns, IBM RS/6000,
SGI, HP workstations, IBM Power/4

- 128 -

Operating System: Unix any flavor

Languages Supported: Fortran 77 and Fortran 90, HPF

Languages Used in Implementation: C

Graphic User Interface: Sunview, X-window (native, motif), Openlook

Cost: Startat
$1850 for source code browser
$4250 for shared memory parallelizer
$6250 for distributed memory parallelizer
$7600 for batch HPF parallelizer

Supplier: AppliedParallel Research, Inc.
550 Main Street, Suite I.
Placerville, CA 95667

Contact: JohnLevesque
(916) 621-1600
levesque@a.psc.edu

Jim Dillon
(916) 621-1600
jed@netcom.com

See reference120

- 129 -

4.2.2 PARASCOPE

Functions:

• An environment for development of parallel scientific programs
written in a shared-memory parallel dialect of Fortran 77.

• Program analysis tools:

• Data dependence analysis
• Control dependence analysis
• Control flow analysis
• Global value numbering
• Static single assignment
• Basic Fortran static semantic analysis
• Interprocedural analysis

• Program transformation tools:

• Reordering transformations:

• Loop distribution, interchange, skewing, fusion, reversal
• Statement interchange

• Dependence breaking transformations:

• Privatization, scalar expansion, array renaming
• Loop splitting, peeling, alignment

• Memory optimizing transformations:

• Strip mining, loop unrolling, scalar replacement,
unroll and jam

• Others:

• Sequential to parallel loops, statement addition
and deletion, loop bounds adjustment

• The ParaScope Editor (PED):

• Text editing
• Template-based structure editing of Fortran modules
• Access to the results generated by the program analysis tools
• User-guided program transformation to exploit and reveal

parallelism

- 130 -

• A debugging system:

• Automatic instrumentation of parallel Fortran programs for
shared-memory multiprocessors to detect data races

• Support for parallelism in the form of nested parallel loops
• Interprocedural analysis to guide placement of instrumentation

to minimize run-time overhead
• Data race report in the form of a pair of references highlighted

in the source code

• The prototype Fortran D compiler:

• Translates Fortran programs annotated with data layout and
distribution directives to Fortran program with message passing
for distributed memory multiprocessors.

Evaluation:

(By Donna Bergmark of Cornell Theory Center)

Strengths:

• Useful in finding data dependencies in parallel loops

Weaknesses:

• Difficult for users to figure out what to do if there are
dependencies

• Does not generate parallel code for our platforms

Useful to NAS: Maybefor tool development

Platforms: ParaScope is supported on the Sun4
and RS6000 platforms.
The Fortran D compiler generates code
for the IPSC/860.
PED generates code for the Sequent and the Cray.

Operating System: Sun OS 4.x on Sun4’s , AIX 3.2 on RS6000’s

Languages Supported: Fortran 77 + extensions for expressing parallel loops

Languages Used in Implementation: C, C++, Yacc, Lex

Graphic User Interface: X11R4

Cost: $150for site license

- 131 -

Supplier: RiceUniversity
CITI/SDC
P.O. Box 1892
Houston, TX 77251-1892
(713) 527-6077

Contact: Sendemail messages with subjects "send license"
and "send catalog" to softlib@cs.rice.edu
to receive information on how to get ParaScope

See reference121 122 123

- 132 -

4.2.3 PAT (Parallelization AssistanT)

Functions:

• A tool set for interactively parallelizing loops in Fortran programs

• Program analysis:

• Intra-/inter-procedural control dependency analysis
• Intra-/inter-procedural data dependency analysis
• Flow analysis
• Loop analysis

• Program transformation:

• Alignment, replication, expression substitution
• Code/declarations generation for parallel loops
• Explicit synchronization insertion (events and locks)

• Interactive parallelization:

• Display of program structure (subroutines and loops)
• Loop parallelizability classification
• Sequential to parallel loop conversion

• Program instrumentation:

• Timing calls insertion around selected loops
• Trace generation
• Display for statistics of loop counts and runtimes

Evaluation:

(Donna Bergmark of Cornell Theory Center)

Strengths:

• Useful in finding data dependencies in parallel loops
• Generate parallel code from serial Fortran code.
• X-Window based user interface is convenient.
• Easy to learn
• Recommended

Weaknesses:

• Requires understanding of dependency analysis.
• GUI not robust enough

Useful to NAS: Maybe
(User experience needed)

- 133 -

Platforms: Pat runs on SUN, IBM, DEC, HP,
SGI workstations
Generates code for
KSR-1, IBM 3090, Sequent, Cray Y-MP

Operating System: UNIX

Languages Supported: Full Fortran 77, with KSR directives
and IBM Parallel Fortran.

Languages Used in Implementation: C and C++

Graphic User Interface: X11R4

Cost: Freefor non-commercial use includes reuseable
data structure class components.
anonymous ftp from: ftp.cc.gatech.edu
in directory pub/pat

Supplier: Georgia Institute of Technology

Contact: BillAppelbe
(404) 894-6187
bill@cc.gatech.edu

See reference124 125 126

- 134 -

4.2.4 TINY

Functions:

• A research/educational tool for experimenting with array data
dependence tests and reordering transformations

• Dependency analysis:

• Induction variable recognition
• Choice of: Omega test, Power test, Lambda test, Banerjee’s

inequalities
• With Omega test:

• Reduction dependences
• Array kill analysis
• Analysis of when assertions can eliminate a dependence

• Program transformations:

• Array & scalar expansion and privatization
• Scalar forward substitution
• Storage classes
• Loop interchange/skewing/distribution/fusion

• A graphic user interface for browsing the results of analysis and
transformations

• A framework for reordering transformations which can be used to
optimize code fragments for parallelism and/or locality

Useful to NAS: Maybefor tool development

Platforms: Unixplatforms

Operating System: UNIX

Languages Supported: Tiny (A toy language developed
by Michael Wolfe of OGI)

Languages Used in Implementation: C

Graphic User Interface: Xterm& curses interface

Cost: None
anonymous ftp from ftp.cs.umd.edu
in pub/omega

Supplier: Departmentof Computer Science
University of Maryland

Contact: omega@cs.umd.edu

- 135 -

See reference127 128 129

- 136 -

4.3 User-Specifying Parallelism

4.3.1 SCHEDULE

Function:

• A large-grain dataflow language for expressing dependencies between
code blocks written in Fortran

• A graphic user interface for specification and visualization

• Performance tools:

• Program profiling
• Execution monitoring
• Memory access visualization
• Program execution visualization
• Critical path determination

• Task scheduling

• Dynamic load balancing

Evaluation:

(By Donna Bergmark at Cornell National Supercomputer Facility)

• Obsolete and being decommissioned
• Received very little use

Useful to NAS: No
(User experience needed,
Does not support NAS platforms)

Platform: CRAY-2

Operating System: UNIX

Languages Supported: Fortran

Languages Used in Implementation: C

Graphic User Interface: X11R4

Cost: None

Supplier: University of Tennessee

Contact: JackDongarra
(615) 974-8295
dongarra@cs.utk.edu

See reference130 131

- 137 -

4.3.2 PYRROS

Functions:

• A task graph language for specifying the operations of tasks and the
data dependencies between them. (The tasks are written in C.)

• A graphical interface for displaying task dependencies

• A scheduler for mapping tasks with arbitrary precedence to processors
and ordering their execution

• A graphical interface for displaying the schedule

• A code generator for producing parallel C codes with communication
primitives based on the schedule

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platforms: SUNGenerates code for nCUBE-II
(working on Intel iPSC/860)

Operating System: UNIX or others that support C

Languages Supported: C

Languages Used in Implementation: C

Graphic User Interface: Xwindow is optional, graph displayer
needs proprietary AT&T DAG system

Cost: None

Supplier: Departmentof Computer Science
Rutgers University

Contact: Tao Yang
(908)-932-0050
tyang@cs.rutgers.edu

Apostolos Gerasoulis
(908)-932-2725
gerasoulis@cs.rutgers.edu

See reference132

- 138 -

4.3.3 ENTERPRISE

Functions:

• A graphic user interface for specifying large-grain (functional)
parallelism in C programs (in terms of "assets" such as departments,
services, workers, and divisions)

• A preprocessor to generate (from the graphical specification) a C
program with parallel functions and message passing between them

• Support for non-blocking function calls until the caller accesses
a result that needs to be returned by the callee (futures)

• Automatic source control

• Limited debugging/performance monitoring

• Animation of a program execution at message-passing level

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support NAS platforms)

Platform: Sun

Operating System: UNIX

Languages Supported: C

Languages Used in Implementation: Smalltalk, C, C++

Graphic User Interface: Smalltalkrunning under X windows

Cost: Inalpha test stage

Supplier: Departmentof Computing Science
University of Alberta
Canada

Contact: JonathanSchaeffer
(403) 492-3851
jonathan@cs.ualberta.ca

See reference133 134

- 139 -

5. Others

Ten tools are included in this part.Section 5.1 presents the meta-tools (tools for
building tools). Section 5.2 lists the tools to make it more effective to compute on a net-
work of workstations. Section5.3 describes the tools for grid partitioning, task schedul-
ing and load balancing.

- 140 -

5.1 Tools for Building Tools

5.1.1 SAGE

Functions:

• A programming language transformation toolkit used to design
restructuring source-to-source compilers and instrumentation packages

• A complete parser for Fortran 77, Fortran 90, C (ansi and k&r),
C++ Att 2.0 and 3.0

• A common internal representation, a library of C functions, and a
C++ class library to access and restructure the internal representation
and to generate the output code

• A comment based annotation language to allow transformation access
to user assertions

Useful to NAS: Maybefor tool development

Platforms: Sun,HP, NeXT, SGI and DEC workstations
(Porting on CM-5, Paragon, KSR, n-Cube,
Mieko, Tera, Cray)

Operating System: UNIX

Languages Supported: Fortran77, Fortran 90, C, C++

Languages Used in Implementation: C and C++

Graphic User Interface: None

Cost: None(gnu rules apply)

Supplier: IndianaUniversity

Contact: DennisGannon
(812) 335-5184
gannon@cs.indiana.edu

See reference135

- 141 -

5.1.2 IMPROV (Integrated Manipulation of PROgram Visualization)

Functions:

• A meta-tool for fast prototyping of complex visualizations of parallel
software behavior (a next generation of the PARADISE, see next entry)

• Support for a formal and complete generalization of the program
visualization procedure, which divides the task into fundamental,
independent modules for specifying the relationships among basic
concepts (Events, Behavior, and Graphics).

• Facilities for users to specify details in each module in terms
of objects called "entities", and to define the visualization by
indicating relationships among the entities in different modules

• A textual language for specifying Events and Behavior entities

• A graphical editor for specifying Graphics (It can also be specified
by text.)

• Rules for specifying entity relationships

• Hierarchical entity construction

• Framework for relating entities from different modules

• Scalability to massively parallel software through various abstract
reduction operations.

• Wide range of graphical manipulations based on fundamental graphical
objects, such as points, lines, squares, circles, polygons, etc.

• Syntax-directed editing

• Support for traces of arbitrary formats, event formats integrated with
ev ent entity specification

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms)

Platforms: Sun3and Sun4/Sparc workstations

Operating System: UNIX

Languages Supported: No specific language requirements or support
Trace formats defined by the user with the
Event entities, ascii and binary

- 142 -

Languages Used in Implementation: C

Graphic User Interface: X11R4(or later)

Cost: None(with license agreement)

Supplier: Departmentof Electrical & Computer Engineering
University of Iowa

Contact: JamesArthur Kohl
(319) 335-6432
kohl@hitchcock.eng.uiowa.edu

Thomas L. Casavant
(319) 335-5953
tomc@hitchcock.eng.uiowa.edu

See reference136 137 138

- 143 -

5.1.3 PARADISE
(PARallel Animated DebuggIng and Simulation Envir onment)

Functions:

• A meta-tool for designing program visualization tools for debugging
and performance tuning of parallel software

• Facilities for users to designs an abstract visual model of parallel
program behavior

• Defining "visual objects" using programmed modules that
describe their functionality and interfaces.

• Connecting visual objects using a graphical interface to
form the overall structure of the visual model.

• Tools for replaying parallel program execution traces

• Tools for simulating program behavior and animating it via the
visual model

• Variable animation and simulation speeds

• Point-and-click to identify internal states of visual objects and
their interconnections (e.g. details of messages, time stamps, and
the actual data being transferred)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support NAS platforms)

Platforms: Sun3and Sun4/Sparc workstations

Operating System: UNIX

Languages Supported: No specific language requirements. Trace formats
are defined by the user to allow arbitrary
traces to be used (ascii only).

Languages Used in Implementation: C

Graphic User Interface: Sunview or X11R4 (or later)

Cost: None(with license agreement)

Supplier: Departmentof Electrical & Computer Engineering
University of Iowa

- 144 -

Contact: JamesArthur Kohl
(319) 335-6432
kohl@hitchcock.eng.uiowa.edu

Thomas L. Casavant
(319) 335-5953
tomc@hitchcock.eng.uiowa.edu

See reference139 140 141

- 145 -

5.1.4 POLKA

Functions:

• A graphics library for building animations of parallel programs
and their executions

• Primitives for creating smooth, color, continuous program
visualizations and animations

• Primitives for explicitly building animations with concurrent
actions, thereby helping to illustrate parallelism

• Focused on ease of learning and use by graphics non-experts

Useful to NAS: Maybefor tool development

Platforms: Unixworkstations

Operating System: UNIX

Languages Supported: C++

Languages Used in Implementation: C++

Graphic User Interface: XWindows and Motif or OLIT

Cost: None

Supplier: Graphics,Viz., and Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Contact: JohnStasko
(404) 853-9386
stasko@cc.gatech.edu

See reference142

- 146 -

5.2 Tools for Parallel Computing on A Network

5.2.1 DQS (Distributed Queuing System)

Functions:

• A distributed queuing system for a network of heterogeneous computers

• Support for single and multi-node loosely-coupledbatch processing

• Facilities for users to request resource that meet some minimum
performance or architecture specifications

• Facilities for configuring, modifying, deleting, and querying the queues

• Facilities for submitting, monitoring, querying, and terminating
jobs on a single computer or a cluster of computers

• Load balancing for jobs submitted togroupqueues

• Optional keyboard/mouse activity monitoring (queue suspended if active)

• Parallel jobs using PVM supported in dedicated mode

Useful to NAS: Maybe
(User experience needed)

Platforms: SUN,IBM, SGI, DEC, HP workstations

Operating System: SunOS 4.1.x, AIX 3.2.x, IRIX 4.0.x,
OSF/1,MACH, HPUX, ULTRIX

Languages Supported: All languages supported by platforms

Languages Used in Implementation: C

Graphic User Interface: X11

Cost: None
ftp at ftp.scri.fsu.edu
pub/DQS//DQS.REV_2.0.tar.Z

Supplier: SupercomputingResearch Institute
Florida State University

Contact: ThomasP. Green
(904) 644-0190
green@scri.fsu.edu

See reference143 144

- 147 -

5.2.2 FUNNEL

Functions:

• A run time support for SIMD program execution on a network of
heterogeneous workstations

• Manages the data stream for multiple instances of the application

• Fault tolerant in cases of machine crash, no swap space, disk full,
or ethernet down

• Large grain parallelism achieved by providing each instance of a
single-processor application with an environment mimicking the
original

Useful to NAS: Maybe
(User experience needed)

Platforms: SGI,DECstations

Operating System: UNIX

Languages Supported: Interfaces to executables, not code

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
Demo available via anonymous ftp
at zebra.desy.de

Supplier: ZEUSCollaboration
Deutsches Elektron-Synchrotron (DESY)
Hamburg, Germany

Contact: BurkhardBurow
49-40-8998-3053
burow@vxdesy.cern.ch

- 148 -

5.2.3 DJM (The Distributed Job Manager)

Functions:

• A job control system that manages the execution of user
applications on Connection Machines

• Facilities to submit, monitor, and terminate jobs

• Facilities to query the status of jobs

• Commands for specifying the number of processors and the
amount of memory and disk space required

• Scheduling jobs to achieve balanced the load on CM partitions

• Scheduling jobs to achieve balanced the load on CM front-end

• Facilities for switching the direction of input/output
streams of a job between screen/keyboard and a file

Useful to NAS: Maybe
(Under evaluation at NAS
User experience needed)

Platforms: CM2,CM5, SUN

Operating System: Provided by the platforms

Languages Supported: Supported by the platforms

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
ftp ec.msc.edu
/pub/LIGHTNING/djm_0.9.11.Z

Supplier: MinnesotaSupercomputer Canter, Inc.

Contact: AlanKlietz
(612) 626-1737
alan@msc.edu

See reference145

- 149 -

5.2.4 CONDOR

Functions:

• A distributed batch system for recovering idle cycles of a
network of workstations

• Job-level parallelism only

• Monitoring the activities of participating workstations

• Scheduling jobs to idle workstations

• Suspending/migrating foreign jobs when the owner of a
workstation starts using it

• Fault-tolerance (with restrictions):

• Checkpointing
• Process migration

• Protection of owner’s files from executing foreign jobs

• Direct NFS access and remote system calls for executing
programs to access remote files

• Redirection of file I/O to the submitting machine

Useful to NAS: Maybe
(User experience needed,
Mechanisms to handle parallel
applications needed)

Platforms: Suns,SGI, Snakes(hp), DecStations, 6K

Operating System: UNIX BSD 4.2 and 4.3

Languages Supported: All languages supported by the platforms

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None
ftp ftp.cs.wisc.edu

Supplier: ComputerScience Department
University of Wisconsin, Madison

Contact: MironLivny
(608) 262-0856
miron@cs.wisc.edu

- 150 -

See reference146 147

- 151 -

5.2.5 MNFS (Modified NFS)

Functions:

• A modified NFS system for supporting shared-memory programs on a
network of workstations:

• Supports shared memory for mapped files
• Support for user-managed consistency of mapped pages
• An additional address space with 32-byte pages for efficiency
• Additional extensions to support efficient data sharing and

program synchronization in the high-latency environments
found in computer networks.

• Better performance than NFS

• Provided as a mod-loaded module, i.e. it runs as part of the kernel
but is dynamically loaded after the OS is booted. No OS recompilation
or rebuilding is required. (A modified NFS daemon is also provided,
as is an automounter that mounfs MNFS file systems.)

Useful to NAS: Noat present time
Maybe in the future
(User experience needed,
Does not support all NAS platforms)

Platforms: Sunworkstations (including MPs)
(386BSD, IRIX in progress)

Operating System: SunOS 4.1.1, 4.1.2, 4.1.3

Languages Supported: C, Fortran77,
Any language that can open a file and do mmap()

Languages Used in Implementation: C

Graphic User Interface: None

Cost: None

Supplier: SupercomputingResearch Center,
17100 Science Drive,
Bowie, MD. 20716

Contact: RonMinnich
(301)-805-7451
rminnich@super.org

See reference148 149 150

- 152 -

5.3 Partitioners and Schedulers

5.3.1 TOP/DOMDEC (DOMain DEComposition)

Functions:

• A tool for mesh partitioning in parallel processing

• Algorithms for initial automatic mesh partitioning

• The Greedy Algorithm
• The RCM algorithm
• A recursive RCM algorithm
• Slicing (Principal Inertia) algorithms (Ix, Iy, Iz)
• Recursive versions of the Slicing algorithms (RIx, RIy, RIz)
• Frontal Algorithm for 1D Topology partitions
• Recursive Graph Bisection
• Recursive Spectral Bisection

• Support for optimizing the items listed below over the initial
partitioning

• Size of the interface
• Frontwidth of the subdomain (for direct frontal solvers)
• A product of the above two items
• Node-wise load balancing
• Element-wise load balancing
• Edge-wise load balancing

• Algorithm used in optimizing the component of the mesh that is
neighboring the interface

• Tabu Search
• Simulated Annealing
• Stochastic Evolution

• Support for decision making in selecting the best mesh partition
for a given problem and a given multiprocessor

• Support for evaluation of load balancing, network traffic and
communication costs

• Generation of parallel data structures needed for local computations
and for message passing

• Object oriented high-speed graphics for user interface

Useful to NAS: Maybe
(User experience needed)

Platforms: Runson SGI, IBM R6000 with the GL card
Generates partition for CRAY Y-MP, KSR,
iPSC-860, and CM-2

- 153 -

Operating System: UNIX

Languages Supported: Fortran, C++

Languages Used in Implementation: C++ and GL

Graphic User Interface: GL

Cost: $250for source license

Supplier: PGSoft,5212 Pinehurst Drive
Boulder, CO 80301

Contact: CharbelFarhat
Phone (303) 492-3992
charbel@alexandra.Colorado.EDU

See reference151

- 154 -

5.3.2 GANG SCHEDULER

Functions:

• Support for fair sharing of time and space on the BBN TC2000

• Allocation of processors and requests for benchmarking time

• Four priority queues

Useful to NAS: No
(User experience needed,
Does not support NAS platforms)

Platform: BBNTC2000

Operating System: UNIX

Languages Supported: C, Fortran, PCP, PFP, Uniform Systems, Zipcode

Languages Used in Implementation: C

Graphic User Interface: vt100display

Cost: None

Supplier: Lawrence Livermore National Laboratory L-560
P.O.Box 808 Livermore CA 94550

Contact: BrentGorda
(510) 294-4147
brent@igor.nersc.gov

See reference152

- 155 -

5.3.3 BLOBS

Functions:

• A visualization tool for interactive evaluation of alternative load
balancing strategies through simulation

• Designed for computations involving particles only

• Facilities for users to control number of processors, partitioning
method, and partitioning frequency

• Tools to estimate and display the problem partitioning, interprocessor
communication costs, workload distribution across the processors, and
overall parallel efficiency based on the user input and a sample trace
of a execution

Useful to NAS: No
(User experience needed,
Does not support all NAS platforms,
For particle methods only)

Platforms: Sparcstationrunning openwindows

Operating System: UNIX

Languages Supported: Accepts a blobs-specific trace format.

Languages Used in Implementation: C

Graphic User Interface: Xview and OpenWindows libraries

Cost: None
anonymous ftp cs.ucsd.edu
in pub/baden/blobs

Supplier: University of California at San Diego

Contact: Prof.Scott B. Baden
(619) 534-8861
sbaden@ucsd.edu

Scott Kohn
(619) 534-5913
skohn@ucsd.edu

See reference153

- 156 -

5.3.4 PREP-P (PREProcessor for Poker)

Functions:

• Static partitioning, placing, routing and scheduling for function-parallel
programs

• Simulation of parallel execution using Poker (Poker is no longer supported
by University of Washington)

Useful to NAS: No
(User experience needed,
Does not support Fortran,
Does not support all NAS platforms)

Platform: Sun3and Sparc workstations

Operating System: UNIX

Languages Supported: XX (a simple abstraction of C)

Languages Used in Implementation: C, assembly language

Graphic User Interface: Requiredby Poker

Cost: None

Supplier: Parallel Computation Lab
Department of Computer Science and Engineering
University of California, San Diego

Contact: FrancineBerman
(619)534-6195
berman@cs.ucsd.edu

See reference154

- 157 -

Acknowledgements

I would like to express my gratitude to all the people who submitted descriptions of
their tools and/or shared with me their experience of using tools.I also would like to
thank reviewers Tom Woodrow, Louis Lopez and Bernard Traversat for their comments.

- 158 -

References

1. GlennKubena, Kenneth Liao, and Larry Roberts,White Paper on Massively Parallel
Programming Languages, IBM, Dec. 3, 1992.

2. ThomasSterling, Paul Messina, Marina Chen, Frederica Darema, Geoffrey Fox,
Michael Heath, Ken Kennedy, Robert Knighten, Reagon Moore, Sanjay Ranka, Joel
Saltz, Lew Tucker, and paul Woodard, ‘‘System Software and Tools for High Perfor-
mance Computing Environments,’’ A Report on the Findings of the JPL Pasadena
Workshop, April, 1992.

3. ISO/IDE,‘‘ Information technology -- Programming languages -- Fortran,’’ Interna-
tional Standard, Reference number ISO/IEC 1539 : 1991 (E), 1991.

4. High Performance Fortran Forum, High Performance Fortran Language Specifica-
tion, Version 1.0 Draft, Jan. 25, 1993.

5. ANSI Technical Committee X3H5,Parallel Processing Model for High Level Pro-
gramming Languages, June 1992.

6. ANSITechnical Committee X3H5,Parallel Fortran Standard, 1992.
7. ANSITechnical Committee X3H5,Fortran Binding -- Data Model Section, 1992.
8. T. Brandes, ‘‘Efficient Data Parallel Program without Explicit Message Passing for

Distributed Memory Multiprocessors,’’ GMD Technical Report, TR92-4, 1992.
9. L. Ridgway Scott, ‘‘Pfortran: a parallel dialect of Fortran,’’ Fortran Forum 11, vol.

No. 3, pp. 20-31, Sept.1992.
10. HarryJordan, ‘‘The Force,’’ ECE Tech. Report 87-1-1, Jan. 1987.
11. Harry F. Jordan, Muhammad S. Benten, Norbert S. Arenstorf, and Aruna V.

Ramanan,Force User’s Manual, March 1989.
12. DonnaReese, ‘‘Object-Oriented Fortran for Portable, Parallel Programs,’’ The Third

IEEE Symposium on Parallel and Distributed Processing, pp. 608-615, December
1991.

13. B.Chapman,P.Mehrotra, and H.P.Zima, ‘‘V ienna FORTRAN - A Fortran Language
Extension for Distributed Memory Multiprocessors,’’ i n Compilers and Runtime
Software for Scalable Multiprocessors, ed. J. Saltz and P. Mehrotra, Elsevier, Ams-
terdam, 1991.

14. P.Brezany, B.Chapman, and H.Zima, ‘‘A utomatic Parallelization for GENESIS,’’
Austrian Center for Parallel Computation, Technical Report ACPC/TR 92--16,
November 1992.

15. B.M.Chapman,P.Mehrotra, and H.Zima, ‘‘Programming in Vienna Fortran,’’ Scien-
tific Programming, vol. Vol.1, No.1, 1992.

16. SeemaHiranandani, Ken Kennedy, and Chau-Wen Tseng, ‘‘Compiling Fortran D for
MIMD Distributed-Memory Machines,’’ Communications of the ACM, vol. 35(8),
pp. 66-80, August 1992.

17. Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer,
Chau-Wen Tseng, and Min-You Wu, ‘‘Fortran D Language Specification,’’ Dept. of
Computer Science Technical Report TR90-141, Rice University, December 1990.

18. I. Foster and K. M. Chandy, ‘‘Fortran M: A Language for Modular Parallel Pro-
gramming,’’ Preprint MCS-P327-0992, Argonne National Laboratory, Argonne, Ill ,
1992.

19. P. Newton and J. C. Browne, ‘‘The CODE 2.0 Parallel Programming Language,’’
Proc. ACM International Conf. on Supercomputing, July 1992..

20. A. Reuter, U. Geuder, M. Haerdtner, B. Woerner, and R. Zink, ‘‘The GRIDS Pro-
ject,’’ Technical Report, University of Stuttgart, 1992.

- 159 -

21. EugeneBrooks, Brent Gorda, and Karen Warren, ‘‘The Parallel C Preprocessor,’’ i n
Scientific Programming, vol. vol 1, Number 1, John Wiley & Sons, Inc., New York.

22. BrentGorda, Karen Warren, and Eugene D. Brooks III, ‘‘Programming in PCP,’’
Technical Report, Lawrence Livermore National Laboratory, UCRL-MA-107029,
April 1991.

23. BrentGorda, ‘‘Data Parallel Programming,’’ Spring Proceedings, 1992 Cray User
Group.

24. EugeneD. Brooks et al., ‘‘The 1992 MPCI Yearly Report: Harnessing the Killer
Micros,’’ Lawrence Livermore National Laboratory, UCRL-ID-107022-92, March
1991.

25. M. C. Rinard, D. S. Scales, and M. S. Lam, ‘‘Heterogeneous Parallel Programming
in Jade,’’ Proceedings of Supercomputing ’92, pp. 245-256, Nov. 1992.

26. M. S. Lam and M. C. Rinard, ‘‘Coarse-Grain Parallel Programming in Jade,’’ Pro-
ceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pp. 94-105, April, 1991.

27. M. C. Rinard and M. S. Lam, ‘‘Semantic Foundations of Jade,’’ Record of the Nine-
teenth Annual ACM Symposium on Principles of Programming Languages, pp.
105-118, Jan., 1992.

28. L.V. Kale, ‘‘The Chare Kernel Parallel Programming Language and System,’’ in:
Proc. of the International Conference on Parallel Processing, Aug. 1990.

29. L.V. Kale, ‘‘A Tutorial Introduction to Charm,’’ Parallel Programming Laboratory
Internal report, 1992.

30. Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver, ‘‘The DINO Parallel
Programming Language,’’ Tech. Report CU-CS-457-90, CS Dept. Univ. of Colorado
at Boulder, April 1990.

31. ThomasM. Derby, Elizabeth Eskow, Richard Neves, Matthew Rosing, Robert B.
Schnabel, and Robert P. Weaver, ‘‘DINO 1.0 User’s Manual,’’ Tech Report CU-
CS-501-90, CS Dept. Univ. of Colorado at Boulder, April 1990.

32. Min-You Wu and Daniel D. Gajski, ‘‘Hypertool: A Programming Aid for Message-
Passing Systems,’’ IEEE Trans. on Parallel and Distributed Systems, vol. 1 No. 3,
pp. 330-343, July 1990.

33. FrancoisBodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby
Yang, ‘‘Distributed pC++: Basic Ideas for an Object Parallel Language,’’ Proceed-
ings of Supercomputing 91 (Albuquerque, Nov. 1991), IEEE Computer Sciety and
ACM SIGARCH, pp. 273-282.

34. A.S. Grimshaw, ‘‘Easy to Use Object-Oriented Parallel Programming with Mentat,’’
to appear in IEEE Computer, May 1993.

35. A. S. Grimshaw, W. Timothy Strayer, and Padmini Narayan, ‘‘The Good News
About Dynamic Object-Oriented Parallel Processing,’’ University of Virginia, Com-
puter Science Report TR-92-41,, 1992.

36. RohitChandra, Anoop Gupta, and John L. Hennesy, ‘‘Integrating Concurrency and
Data Abstraction in the COOL Parallel Programming Language,’’ Technical Report
CSL-TR-92-511, Computer Systems Lab, Stanford University,, February 1992.

37. RohitChandra, Anoop Gupta, and John L. Hennesy, ‘‘Data Locality and Load Bal-
ancing in COOL,’’ To Appear in the Symposium on Principles and Practices of Par-
allel Programming (PPoPP), May 1993.

38. GailE. Kaiser, Wenwey Hseush, Steven S. Popovich, and Shyhtsun F. Wu, ‘‘Multi-
ple Concurrency Control Policies in an Object-Oriented Programming System,’’ 2nd
IEEE Symposium on Parallel and Distributed Processing, Dallas TX, pp. 623-626,

- 160 -

December, 1990.
39. Steven S. Popovich, Shyhtsun F. Wu, and Gail E. Kaiser, ‘‘A n Object-Based

Approach to Implementing Distributed Concurrency Control,’’ 11th International
Conference on Distributed Computing Systems, Arlington TX, pp. 65-72, May, 1991.

40. Wenwey Hseush, James C. Lee, and Gail E. Kaiser, ‘‘MeldC Threads: Supporting
Large-Scale Dynamic Parallelism,’’ Technical Report CUCS-010-92, Columbia Uni-
versity, March, 1992.

41. ThomasBraunl, ‘‘Structured SIMD Programming in Parallaxis,’’ Structured Pro-
gramming Journal, vol. 10/3, 1998.

42. ThomasBraunl, ‘‘ Parallel Programming,’’ i n An Introduction Textbook, Prentice-
Hall, Summer 1993.

43. Walter F. Tichy and Christian G. Herter, ‘‘Modula-2*: An Extension of Modula-2
for Highly Parallel, Portable Programs,’’ Technical Report KA-INF, No. 4/90, Jan.,
1990.

44. MichaelPhilippsen and Walter F. Tichy, ‘‘Modula-2* and its Compilation,’’ First
International Conference of the Austrian Center for Parallel Computation, pp.
169-183, Springer Verlag, September 30 - October 2, 1991.

45. IanFoster and Stephen Taylor, in Strand New Concepts in Parallel Programming,
Prentice Hall, 1989.

46. D.Cann, ‘‘Retire Fortran? A Debate Rekindled,’’ Communications of the ACM, vol.
Vol 35, Number 8,August, 1992.

47. J.T. Feo, D.C. Cann, and R. R. Oldehoeft, ‘‘A Report on the SISAL Language Pro-
ject,’’ Journal of Parallel and Distributed Computing, vol. Vol 12 No. 10, pp.
349-366, December 1990.

48. J.R. McGraw and et. al., ‘‘Sisal: Streams and iterations in a single-assignment lan-
guage, Language Reference Manual, Version 1.2,’’ Lawrence Livermore National
Laboratory Manual M-146 (Rev. 1), March 1985.

49. Lawrence Livermore National Laboratory, ‘‘Proceedings of the Second Annual Sisal
Users Conference,’’ Lawrence Livermore National Laboratory Technical Report
UCRL JC112593, October 1992.

50. I. Foster, R. Olson, and S. Tuecke, ‘‘Productive parallel programming: The PCN
approach,’’ Scientific Programming, vol. 1(1), pp. 51-66, 1992.

51. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

52. AlanH. Karp, ‘‘Some Experience with Network Linda,’’ The International Journal
for High Speed Computing (to appear), 1993.

53. D. Gelernter, N. Carriero, S. Chandran, and S. Chang, ‘‘Parallel Programming in
Linda,’’ Proceedings of the 1985 International Conference on Parallel Processing,
pp. 255-263, 1985.

54. SudhirAhuja, Nicholas Carriero, and David Gelernter, ‘‘Linda and Friends,’’ IEEE
Computer, pp. 26-34, Aug. 1986.

55. T. Bemmerl and A. Bode, ‘‘A n Integrated Tool Environment for programming dis-
tributed memory multiprocessors,’’ i n Distributed memory computing, Lecture Notes
in Computer Science, ed. A. Bode, vol. Vol. 487, pp. 130 - 142, Springer-Verlag,
1991.

56. ‘‘Manuals on: MMK, TOPSYS, DETOP, PAT OP, VISTOP,’’ Technical Report, Tech-
nische Universit"at M"unchen, 1991.

57. BinaySugla, John Edmark, and Beth Robinson, ‘‘A n Introduction to the CAPER
Concurrent Application Programming Environment,’’ IEEE Conference on Parallel

- 161 -

Processing, 1989.
58. DougKimeleman and Dror Zernik, ‘‘On-the-Fly Topological Sorting for Interactive

Debugging and Live Visualization of Parallel Programs,’’ To appear in the Third
ACM ONR Workshop on Parallel and Distributed Debugging, may, 1993.

59. LeonidGluhovsky and Dror Zernik, ‘‘ILGA - A Little Language For Processing
Graphs,’’ Technical report No. 872. Electrical Engineering Faculty, Technion.

60. Gregory R. Andrews and Ronald A. Olsson,The SR Programming Language: Con-
currency in Practice, ISBN 0-8053-0088-0, Benjamin/Cummings Publishing Com-
pany, 1993.

61. G.Sutcliffe and J. Pinakis, ‘‘Prolog-D-Linda: An Embedding of Linda in SICStus
Prolog,’’ Technical Report 91/7, Department of Computer Science, The University of
Western Australia, Perth, Australia.

62. H.El-Rewini and T. Lewis, ‘‘Scheduling and Performance Evaluation Tool for Par-
allel Computing,’’ Proceedings of 4th Annual Symposium on Parallel Processing,
Fullerton, CA., p. 60, April 1990.

63. H.El-Rewini and T. Lewis, ‘‘Scheduling Parallel Program Tasks onto Arbitrary Tar-
get Machines,’’ Journal of Parallel and Distributed Computing, vol. Vol 9, pp.
138-153, June 1990.

64. Parasoft Co.,Express C User’s Guide, Version 3.0, 1990.
65. J.J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam, ‘‘A Users’ Guide to

PVM,’’ Technical Report No. ORNL/TM-11826, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831-6367, July 1991.

66. V. S. Sunderam, ‘‘PVM : A Framework for Parallel Distributed Computing,’’ Con-
currency: Practice and Experience, vol. Vol. 2 No. 4, pp. 315--339, Dec. 1990.

67. J.J. Dongarra, G. A. Geist, R. Manchek, J. Plank, and V. Sunderam, ‘‘HeNCE: A
User’s Guide Version 1.2,’’ Technical Report, Computer Science Department,
CS-92-157, February 1992.

68. J.J. Dongarra, G. A. Geist, R. Manchek, K. Moore, R. Wade, and V. S. Sunderam,
‘‘ HeNCE: Graphical Development Tools for Network-Based Concurrent Comput-
ers,’’ Proceedings of the Scalable High Performance Computing Conference IEEE
Computer Society Press, pp. 129-136, April 1992, Williamsburg.

69. RalphButler Ewing Lusk, ‘‘User’s Guide to the p4 Parallel Programming System,’’
Technical Report, Argonne National Laboratory, Mathematics and Computer Sci-
ence Division, ANL-92/17, Oct. 1992.

70. Timothy G. Mattson, Craig C. Douglas, and Martin H. Schultz, ‘‘A Comparison of
CPS, LINDA, P4, POSYBL, PVM, and TCGMSG: Two Node Communication
Times,’’ Yale University Technical Report YALEU/DCS/TR-975, 1993.

71. RobertJ. Harrison, ‘‘Moving Beyond Message Passing: Experiments With A Dis-
tributed-Data Model,’’ Technical Report, Argonne National Laboratory, 1991.

72. M. Fischler, G. Hockney, and P. Mackenzie, ‘‘Canopy 5.0 Manual,’’ Technical
Report, Fermilab.

73. M. Fischler, ‘‘The ACPMAPS System - A Detailed Overview,’’ Fermilab publica-
tion FERMILAB-TM-1780.

74. Fausey, Rinald, Wolbers, Potter, Yeager, Ullfig, ‘ ‘CPS & CPS Batch Reference
Guide,’’ Fermi Computing Division #GA0008.

75. Fausey, Rinaldo, Wolbers, Potter, Yeager, Ullfig, ‘ ‘CPS User’s Guide,’’ Fermi Com-
puting Division #GA0009.

76. FrankRinaldo and Stephan Wolbers, ‘‘Loosely-Coupled Parallel Processing at Fer-
milab,’’ To be published in ’Computers in Physics’, March-April 1993.

- 162 -

77. Matthew R. Fausey, ‘‘CPS and the Fermilab Farms,’’ FERMILAB-Conf-92/163, June
1992.

78. Tom Nash, ‘‘High Performance Parallel Local Memory Computing at Fermilab,’’
Proceedings of WHP92 on Heterogeneous Processing, Beverly Hills, Calif, March
23, 1992.

79. L. Bomans, R. Hempel, and D. Roose, ‘‘The Argonne/GMD macros in Fortran for
portable parallel programming and theirimplementation on the Intel iPSC/2,’’ Paral-
lel Computing, North-Holland, vol. Vol. 15, pp. 119-132, 1990.

80. R.Hempel, ‘‘The ANL/GMD Macros (PARMACS) in Fortran for Portable Parallel
Programming using the Message Passing Programming Model,’’ User’s Guide and
Reference Manual, Version 5.1, Nov. 1991.

81. R.Hempel, H.-C. Hoppe, and A. Supalov, ‘‘PARMACS 6.0 Library Interface Speci-
fication,’’ GMD internal report, Dec. 1992.

82. R.Hempel and H. Ritzdorf, ‘‘The GMD Communications Library for Grid-oriented
Problems,’’ GMD Arbeitspapier No. 589.

83. DianeT. Rover and Joan M. Francioni, ‘‘A Survey of PICL and Paragraph Users
(1992),’’ Technical Report, Department of Electrical Engineering, Michigan State
University (TR-MSU-EE-SCSL-01193), Feb. 1993.

84. G.A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, ‘‘PICL, A Portable Instru-
mented Communication Library, C Reference Manual,’’ ORNL/TM-11130, July,
1990.

85. A. Quealy, G. L. Gole, and R. A. Blech, ‘‘Portable Programming on Paral-
lel/Networked Computers Using the Application Portable Parallel Library (APPL),’’
to be published as a NASA TM, 1993.

86. R.Ponnusamy, R. Das, J. Saltz, and D. Mavriplis, ‘‘The Dybbuk Runtime System,’’
Compcon, San Francisco, February 1993.

87. C.Chase, K. Crowley, J. Saltz, and A. Reeves, ‘‘Parallelization of Irregularly Cou-
pled Regular Meshes,’’ Sixth International Conference on Supercomputing, Wash-
ington DC, June 1992.

88. R.Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy, ‘‘The Design and
Implementation of a Parallel Unstructured Euler Solver Using Software Primitives
(AIAA-92-0562),,’’ Proceedings of the 30th Aerospace Sciences Meeting, Reno NV,
1992.

89. A. Sussman, J. Saltz, R. Das, S. Gupta, D. Mavriplis, and R. Ponnusamy, ‘‘PARTI
Primitives for Unstructured and Block Structured Problems,’’
Computing Systems in Engineering (Proceedings of Noor’s Flight Systems confer-
ence, pp. 73-86, 1992, 3, 1.

90. R.Kannan, et. al., ‘‘Software Environment for Network Computing,’’ Workshop on
"Heterogeneous Network-Based Concurrent Computing" SCRI/Florida State Uni-
versity, October 16-18, 1991 also appears in the newsletter for the IEEE Technical
Committee on Operating Systems and Application Environments, Vol. 6, No. 1,
1992. Also available as a technical report(CERC-TR-RN-91-007) from CERC,
WVU, Morgantown, WV 26505..

91. R. Kannan, C.L.Chen, Michael Packer, and Hawa Singh, ‘‘Directory Service for
Group Work,’’ CSCW 92 Tools & Technologies Workshop, Toronto Canada. Also
available as a technical report (CERC-TR_RN-91-004) from CERC, WVU, Morgan-
town, WV 26505.

92. Vangati R. Narender and R. Kannan, ‘‘Dynamic RPC for Extensibility,’’ IEEE Inter-
national Phoenix Conference on Computers and Communications-92, Phoenix, Ari-
zona, April 1 -3, 1992.

- 163 -

93. V. Jagannathan, K. J. Cleetus, R. Kannan, J. Toth, and V. Saks, ‘‘A pplication Mes-
sage Interface,’’ IEEE InternationalPhoenix Conference on Computers and Com-
munications-92, April 1 -3,1992, Phoenix, Arizona..

94. RolandZink, ‘‘The Stuttgart Parallel Processing Library SPPL and the X Windows
Parallel Debugger XPDB,’’ To be presented at the Seventh International Parallel
Processing Symposium Parallel Systems Fair, Newport Beach CA, April 1993.

95. Tammy Welcome, ‘‘Programming in LMPS,’’ Technical Report, Lawrence Liver-
more National Laboratory, UCRL-MA-107031, March 1991.

96. ScottB. Baden and Scott Kohn, ‘‘The Reference Guide to GenMP -- The Generic
Multiprocessor,’’ Technical Report, University of California, San Diego, Dept. of
Computer Science and Engineering, CS92-243, June, 1992.

97. ThinkingMachine Co.,Prism User’s Guide version 1.1, Dec. 1991.
98. MasPar Computer,MPPE User Guide.
99. DigitalEquipment Corporation,PARASPHERE User’s Guide.
100. BBN Systems and Technologies, Inc.,Using the Xtra(TM) Programming Environ-

ment.
101. Kendall Square Research,KSR Manual.
102. IntelSupercomputer Systems Division, iPSC/2 and iPSC/860 Interactive Parallel

Debugger Manual, April 1991.
103. AdamBeguelin, ‘‘Xab: A Tool for Monitoring PVM Programs,’’ To appear HP’93,

Newport CA, April 1993. Also available as CMU tech report CMU-CS-93-105.
104. CrayResearch Inc.,UNICOS Performance Utilities Reference Manual SR-2040 6.0,

pp. 199-234, 1991.
105. IntelSupercomputer Systems Division,Performance Analysis Tools Manual.
106. DianeRover and Joan Francioni, ‘‘In process of compiling a report on the experi-

ence of using parallel programming tools,’’ M ichigan State University, 1993.
107. MichaelT. Heath and Jennifer A. Etheridge,, ‘‘V isualizing the Performance of Paral-

lel Programs,’’ IEEE Software, vol. Vol. 8, No. 5, pp. 29-39, September 1991.
108. CharliesFineman, Philip Hontalas, Sherry Listgarten, and Jerry Yen, A User’s

Guide to AIMS, Version 1.1, May, 1992.
109. DanielA. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A. Shield,

and Bradley W. Schwartz, ‘‘The Pablo Performance Analysis Environment,’’ Techni-
cal Report, University of Illinois.

110. BartonP. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim,
and Timothy Torzewski, ‘‘IPS-2: The Second Generation of a Parallel Program
Measurement System,’’ IEEE Trans. on Parallel and Distributed Systems, vol. 1 No.
2, April 1990.

111. Jeffrey K. Hollingsworth and bart@cs.wisc.edu, ‘‘Dynamic Control of Performance
Monitoring on Large Scale Parallel Systems,’’ Technical Report, Univ. of Wiscon-
sin-Madison Comp Sci Dept.

112. R.Bruce Irvin and Barton P. Miller, ‘‘Multi-Application Support in a Parallel Pro-
gram Performance Tool,’’ Univ. of Wisconsin-Madison Comp Sci Dept Tech Rep
#1135.

113. Weiming Gu and Karsten Schwan, ‘‘Falcon: AMonitoring and Visualization Sys-
tem for Parallel and Distributed Systems.,’’ Technical Report GIT-CC-93/11, Geor-
gia Institute ofTechnology. January 1993. Draft..

114. Virginia Herrartc and Ewing Lusk, ‘‘Studying Parallel Programming Behavior with
Upshot,’’ Argonne National Laboratory Technical Report ANL-91/15.

- 164 -

115. EugenioZabala and Richard Taylor, ‘‘Maritxu: Generic visualisation of highly par-
allel processing,’’ i n Programming Environments for Parallel Computing, ed. N.
Topham, R. Ibbett, and T. Bemmerl, pp. 171-180, Noth-Holland, 1992.

116. EugenioZabala and Richard Taylor, ‘‘Process and processor interaction: architecture
independent visualisation schema,’’ Environments and Tools for Parallel Scientific
Computing, 7-8 September, Saint Hilaire du Touvet, France, 1992.

117. EugenioZabala and Richard Taylor, ‘‘Maritxu: Visualising the run-time behaviour
of transputer networks,’’ i n Parallel Computing: from theory to sound practice, Pro-
ceedings from EWPC’92, Barcelona, Spain, ed. Wouter Joosen and Elie Milgrom,
pp. 100-103, IOS Press, March 1992.

118. CrayResearch, Inc.,CF77 Compiling System Volume 4: Parallel Processing Guide.
119. DouglasM. Pase and Katherine E. Fletcher, ‘‘A utomatic Parallelization: A Compari-

son of CRAY fpp and KAI KAP/CRAY, ’’ NASA Ames NAS Technical Report,
RND-90-010, Nov. 1990.

120. AppliedParallel Research,FORGE 90 Version 8.0 Baseline System User’s Guide,
April 1992.

121. AlanCarle, Keith D. Cooper, Robert T. Hood, Ken Kennedy, Linda Torczon, and
Scott K. Warren, ‘‘A Practical Environment for Scientific Programming,’’ IEEE
Computer, Nov. 1987.

122. C.David Callahan, Keith D. Cooper, Robert T. Hood, Ken Knennedy, and Linda
Torczon, ‘‘Parascope: A Parallel Programming Environment,’’ International Journal
of Supercomputer Applications, vol. 2 No. 4, pp. 84-99, Winter, 1988.

123. K. Kennedy, K. S. McKinley, and C. Tseng, ‘‘Interactive Parallel Programming
Using the ParaScope Editor,’’ TOPDS, vol. 2 No. 3, pp. 329-341, July 1991.

124. Bill Appelbe and Kevin Smith, ‘‘Start/Pat: A Parallel-Programming Toolkit,’’ IEEE
Software, pp. 29-38, July 1989.

125. Kevin Smith, Bill Appelbe, and Kurt Stirewalt, ‘‘Incremental Dependence Analysis
for Interactive Parallelization,’’ ICS, pp. 330-341, June 1990.

126. Bill Appelbe, Kevin Smith, and Kurt Stirewalt, ‘‘PATCH -- A New Algorithm for
Rapid Incremental Dependence Analysis,’’ ICS, pp. 424-432, June 1991.

127. MichaelWolfe, ‘‘The Tiny Loop Restructuring Research Tool,’’ Proc of 1991 Inter-
national Conference on Parallel Processing,, pp. II-46 - II-53, 1991.

128. William Pugh, ‘‘The Omega test: a fast and practical integer programming algorithm
for dependence analysis,’’ Communications of the ACM 8, pp. 102--114, August
1992.

129. William Pugh and David Wonnacott, ‘‘Eliminating False Data Dependences using
the Omega Test,’’ Tech. Report CS-TR-2993, Dept. of Computer Science, Univ. of
Maryland, College Park.

130. J.J. Dongarra and D. C. Sorensen, ‘‘SCHEDULE: Tools for Developing and Ana-
lyzing Parallel Fortran Program,’’ Tech. Memo 86, Argonne National Laboratory,
Nov. 1986.

131. J.J. Dongarra and D. C. Sorensen, ‘‘SCHEDULE Users Guide,’’ Argonne National
Laboratory, June 1987.

132. T. Yang and A. Gerasoulis, ‘‘PYRROS: Static scheduling and code generation for
message passing multiprocessors,’’
Proc. of 6th ACM Inter. Conf. on Supercomputing, Washington D.C., pp. 428-437,
July 1992.

133. Greg Lobe, Paul Lu, Stan Melax, Ian Parsons, Jnathan Schaeffer, Carol Smith, and
Duane Szafron, ‘‘The Enterprise Model for Developing Distributed Applications,’’

- 165 -

TR 92-20, Department of Computing Science, University of Alberta, 1992.
134. DuaneSzafron, Jonathan Schaeffer, Pok Sze Wong, Enoch Chan, Paul Lu, and Carol

Smith, ‘‘The Enterprise Distributed Programming Model,’’ Programming Environ-
ments for Parallel Computing, pp. 67-76, Elsevier Science Publishers, 1992.

135. DennisGannin, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukkai, Srinivas Narayana,
Neelakantan Sundaresan, Daya Attapatu, and Francois Bodin, ‘‘Sigma II: A Tool
Kit for Building Parallelizing Compilers and performance Analysis Systems,’’ Pro-
ceedings 1992, IFIP Edinburgh Workshop on Parallel Programming Environments.
April, 1992 in Programming Environments for Parallel Computing, IFIP Transac-
tions A-11, N. Topham, R.Ibbet, T. Bemmerl, eds., North-Holland Press, pp. 17-36.

136. T. L. Casavant and J. A. Kohl, ‘‘The IMPROV Meta-Tool Design Methodology for
Visualization of Parallel Programs,’’ Invited Paper, International Workshop on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), January 1993.

137. J.A. Kohl and T. L. Casavant, ‘‘Methodologies for Rapid Prototyping of Tools for
Visualizing the Performance of Parallel Systems,’’ Presentation at Workshop on Par-
allel Computer Systems: Software Tools, Santa Fe, New Mexico, October 1991.

138. J.A. Kohl, ‘‘The Construction of Meta-Tools for Program Visualization of Parallel
Software,’’ Technical Report Number TR-ECE-920204, Department of ECE, Uni-
versity of Iowa, Iow aCity, IA, 52242, February 1992.

139. J.A. Kohl and T. L. Casavant, ‘‘Use of PARADISE: A Meta-Tool for Visualizing
Parallel Systems,’’ Proceedings of the Fifth International Parallel Processing Sym-
posium (IPPS), Anaheim, California, pp. 561-567, May 1991.

140. J.A. Kohl and T. L. Casavant,, ‘‘A Software Engineering, Visualization Methodol-
ogy for Parallel Processing Systems,’’ Proceedings of the Sixteenth Annual Interna-
tional Computer Software & Applications Conference (COMPSAC), Chicago, Illi-
nois, pp. 51-56, September 1992.

141. T. L. Casavant, J. A. Kohl, and Y. E. Papelis, ‘‘Practical Use of Visualization for Par-
allel Systems,’’ Invited Keynote Address Text for 1992 European Workshop on Paral-
lel Computers (EWPC), Barcelona, Spain, March 23-24, 1992.

142. Stasko, John T. and Kraemer, Eileen, ‘‘A M ethodology for Building Application-
Specific Visualizations of Parallel Programs,’’ Technical Report Graphics, Visualiza-
tion, and Usability Center, Georgia Institute of Technology, GIT-GVU-92-10, also to
appear in Journal of Parallel and Distributed Computing, May 1993, Jan. 1992 $K
polka-report.

143. ThomasP. Green and Jeff Snyder, ‘‘DQS, A Distributed Queuing System,’’ D QS
Documents, March 1992.

144. LouisS. Revor, ‘‘DQS Users Guide,’’ D QS Documents, Sept. 1992.
145. AlanKlietz, ‘‘The Distributed Job Manager,’’ User’s Guide of DJM, 1992.
146. AllanBricker, Michael Litzkow, and Miron Livny, ‘‘Condor Technical Summary,’’

Condor Documents, Sept. 1991.
147. MichaelLitzkow and Miron Livny, ‘‘Supporting Checkpointing and Process Migra-

tion Outside the UNIX Kernel,’’ Usenix Winter Conference, San Francisco, CA,
1992.

148. RonMinnich and Dave Farber, ‘‘Reducing Host Load, Network Load, and Latency
in a Distributed Shared Memory,’’ 10th ICDCS, 1990.

149. RonMinnich, ‘‘Mether: A Memory System for Network Multiprocessors,’’ Ph.D.
Thesis, U. Penn., 1991.

- 166 -

150. RonMinnich and Dan Pryor, ‘‘A Radiative Heat Transfer Simulation on a SPARC-
Station Farm,’’ HPDC-1, 1992.

151. C.Farhat and M. Lesoinne, ‘‘A utomatic Partitioning of Unstructured Meshes for the
Parallel Solution of Problems in Computational Mechanics,’’ International Journal
for Numerical Methods in Engineering, vol. Vol. 36, No. 5, pp. 745-764, 1993.

152. BrentC. Gorda and Eugene D. Brooks III, ‘‘Gang Scheduling a Parallel Machine,’’
Lawrence Livermore National Laboratory UCRL-JC-107020 Rev. 1.

153. ScottR. Kohn and Scott B. Baden, ‘‘Blobs: Visualization of Particle Methods on
Multiprocessors,’’ CSE Technical Report Number CS92-241, May, 1992.

154.Experience With an Automatic Solution to the Mapping Problem in The Characteris-
tics of Parallel Programs,MIT Press, 1987.

- 167 -

Appendix A: Comparison of Parallel Languages

The table on the next page compares the languages described in Part 1. It indicates
whether there is a compiler/translator for the language, and whether there are debuggers
and performance tuning tools associated.It also indicates if the language is useful to
NAS at this time.

- 168 -

Parallel Languages

Name Compiler Debugger Performance Useful Page
Preprocessor Tool To NAS Number

Adaptor y n n n 16
Caper y y y n,m 56
CC++ y n n n,m 41
Charm y n y n,m 31

Code 2.0 y n y n,m 24
Cool y n y n,m 39
Dino y n n n,m 32
Force y n n n,m 18

Fortran 90 y n n std 10
Fortran D y y n m 21
Fortran M y n n n,m 23

Grids y n n n,m 26
HPF n n n std 12

HyperTool y n y n,m 33
Jade y n n n,m 29

Linda y y y m 52
MeldC y y n n 42
Mentat y n n n,m 37

Modula-2* y n n n 45
O-O Fortran y n n n,m 19
P-Languages y n n n,m 17

Parallax n n y n 62
Parallaxis y y y n 43

PC++ y n n n,m 35
PCN y y y n,m 50

PCP/PFP y n n n 27
PDDP y n n n 28

P-D Linda y n n n 61
Sisal y y n n,m 48
SR y n n n 60

Strand88 y y y n,m 46
Topsys y y y n,m 54

Vienna Fortran y n n n 20
Visage y n y n,m 58
X3H5 n n n std 14

O-O: Object-Oriented
P-D: Prolog-D
m: maybe (user experience needed and/or support NAS platforms)
n: no
n,m: noat present time, maybe in the future
std: proposedstandard
y: yes

- 169 -

Appendix B: Comparison of Libraries

The table below compares the libraries described in Part 2. The entry "Machine"
lists the type of machines which the library supports: shared-memory, message-passing,
and networks of computers.The entries "Debugger" and "Performance Tools" indicate if
there are debugging and performance tools associated with the library.

Libraries

Name Machine Debugger Performance Useful Page
Tool to NAS Number

APPL msg n n n,m 79
Canopy sh,msg,net n n n,m 72

CM net n n n,m 82
CPS net y y n,m 74

Express sh,msg,net y y m 64
GenMP sp n n n 87
LMPS msg n n n 85
Mtask sh n n n 86

P4 sh,msg,net n y m 69
Parmacs sh,msg,net n y n,m 76

Parti msg,net n n m 81
PICL msg n y m 78
PVM net y y m 67
SPPL net n n n 84

TCGMSG sh,msg n n n,m 70

m: maybe (user experience needed)
msg: messagepassing
n: no
n,m: noat present time, maybe in the future
net: network of computers
sh: sharedmemory
sp: specialpurpose
y: yes

- 170 -

Appendix C:

Comparison of Debugging and Performance Tuning Tools

The table on the next page compares the main features of the tools described in Part
3. Many tools in this part provide visualization of execution trace for performance tun-
ing. Visualizing program behavior also helps debugging, although debugging might not
be the focus of the design of the tool.The "tr" in the "Debugger" entry below reflects this
side effect. Theentry "Trace Generation" indicates whether a tool generates trace and the
method of trace generation if it does.The entry "Visualization" indicates the main fea-
tures of the visualization.

- 171 -

Debuggers and Performance Tuning Tools

Name Debugger Trace Visualization Useful Page
Generation To NAS Number

AIMS tr au,u g,an,sm,p m 111
Atexpert n au g,st,sm y 102

BBN-Perf tr au,u g,st,p m 109
ExecDiff d u tx n 101
Falcon tr u g,an n,m 114
GPMS tr u g,an,sm,p n 120

Intel-Perf tr u g,an,sm,p m 104
IPD sl,tl n tx m 98

IPS-2 tr y y m 113
KSR-Perf n au,u tx m 107
Maritxu tr n g,an m 118
MPPE sl au,u g,an,sm,p m 91
Pablo tr u g,an m 112

ParaGraph tr u g,an,sm,p m 105
ParaSphere sl au g,st,sm,p m 93

Prism sl au g,an,sm,p y 89
TotalView sl u tx m 95

UDB sl n n m 97
Upshot tr n g,an,sm,p m 117
Vo yeur n u tx,p n 116
XAB tr au g,an m 99
Xpdb tl n n n 100

an: animation-basedvisualization
au: automaticsource instrumentation
d: debugging based on data comparison
g: graphical
m: maybe (user experience needed, and/or if we have the machine)
n: no
n,m: noat present time, maybe in the future
p: profile
sl: source-level debugging
sm: summary
st: staticvisualization
tl: task-level debugging
tr: trace-visualization-baseddebugging (focus is performance tuning)
tx: text only
u: user-directed source instrumentation
y: yes

- 172 -

Appendix D: Comparison of Parallelization Tools

The table below compares the functions of the tools described in Part 4. It indicates
whether a tool performs static code analysis such as dependency analysis, whether it
transforms a code to increase parallelism, and whether it generates code (machine code or
source code) for target machines.It also indicates whether there are debugging and per-
formance tuning tools associated with the tool.

Parallelization Tools

Name Analysis/ Code Debugger Performance Useful Page
Transform. Gen. Tool to NAS Number

Enterprise n y y y n 136
Forge 90 y y n y y 124

fpp y y n n y 122
KAP y y n n n 123

ParaScope y y y n m 127
PAT y y n y m 130

Pyrros n y n n n 135
Schedule n y y y n 134

Tiny y n n n m 132

Transform.: Transformation
Gen.: Generation
m: maybe (user experience needed, or for tools development)
n: no
n,m: noat present time, maybe in the future
y: yes

- 173 -

Appendix E: Summary of Other Tools

The table below summarizes the tools described in Part 5. The entry "Meta-Tool"
indicates if a tool is for the design and development of other tools.The entry Sched-
uler/Load Balancer indicates if the tools is for task scheduling and/or load balancing.
The entry "Network Support" indicates if the tool is to facilitate parallel computation on a
network of computers.

Other Tools

Name Meta-Tool Scheduler/ Network Useful Page
Load Balancer Support toNAS Number

Blobs n sim n n 153
Condor n y y m 147
DJM n y y m 146
DQS n n y m 144

Funnel n y y m 145
Gang n y n n 152

Improv p n n n,m 139
MNFS n n y n,m 149

Paradise p n n n,m 141
Polka p n n m 143
Prep-P n sim n n 154
Sage c n n m 138

TopDomDec n y n m 150

c: for designing compiler front-end
m: maybe (user experience needed)
n: no
n,m: noat present time, maybe in the future
ns: network support
p: for performance tuning tools
sim: throughsimulation
y: yes

